将大数据框按列拆分为较小的子集

Splitting up a big data-frame into smaller subset column wise

我正在尝试 运行 使用所有可能的组合对具有不同分类变量和连续变量的多个主成分进行方差分析。

我的数据框的尺寸是

dim(tcga_mrna.pcs55)
[1] 147  67

我要测试的模型组合编号是这个112585

由此生成

frms <- with(expand.grid(dv, rhs), paste(Var1, Var2, sep = ' ~ '))

现在我尝试 运行 它曾经卡住了很长一段时间所以我不得不中止它给我的计算资源。

因此,我认为如果我将我的数据框拆分成更小的数据框,我想在其中保持所有预测变量不变,但我想将其他列分成小的子集。

我的数据小子集

 dput(head(tcga_mrna_pcs55))
structure(list(Sample_ID = c("TCGA-AB-2856", "TCGA-AB-2849", 
"TCGA-AB-2971", "TCGA-AB-2930", "TCGA-AB-2891", "TCGA-AB-2872"
), FAB = c("M4", "M0", "M4", "M2", "M1", "M3"), prior_malignancy = c("no", 
"no", "no", "no", "no", "no"), Age = c(63, 39, 76, 62, 42, 42
), BM_percentage = c(82, 83, 91, 72, 68, 88), Cytogenetic_Code = c("Normal Karyotype", 
"Complex Cytogenetics", "Normal Karyotype", "Normal Karyotype", 
"Complex Cytogenetics", "PML-RARA"), Histologic_Subtype = c("NUP98 Translocation", 
"Complex Cytogenetics", "Normal Karyotype", "NUP98 Translocation", 
"Complex Cytogenetics", "PML-RARA"), Risk_Cyto = c("Intermediate", 
"Poor", "Intermediate", "Intermediate", "Poor", "Good"), Risk_Molecular = c("Poor", 
"Poor", "Intermediate", "Poor", "Poor", "Good"), Sex = c("Male", 
"Male", "Female", "Female", "Male", "Male"), TMB = c(0, 0.733333333333, 
0.3, 0.266666666667, 0.466666666667, 0.333333333333), WBC = c(76.7, 
5, 5, 27.7, 10.7, 2.1), PC1 = c(-25.4243169876343, 38.5584419151387, 
-18.8838255683554, 3.773812175371, -5.02868029999407, 21.4658284982092
), PC2 = c(14.4895578447888, -27.8233346053999, -0.318074813205288, 
6.17043126174388, -9.29150756229324, 35.1156168048889), PC3 = c(-10.6509445605983, 
28.0996432599761, 5.88270605324811, -26.4971717145656, -0.896362785151599, 
23.2794429531062), PC4 = c(1.18248804745738, -21.0145760152975, 
-13.6652202316835, 4.64544888299446, 6.10552116611012, 1.085498115633
), PC5 = c(-14.8325881422899, 17.8653710387376, 8.90002489087104, 
-0.550793434039587, 5.90790796345414, 13.7446793572887), PC6 = c(0.695367268633542, 
-7.46255391237719, -9.48973541984696, 5.27626778248046, 2.85645531301921, 
-2.5417697261715), PC7 = c(-16.7000152968204, 14.3887321471474, 
16.0657716315069, -9.86610587188809, -8.27832660111485, -3.14876491002283
), PC8 = c(2.79822148585397, -6.63528657940777, -12.8725509038156, 
-2.17579923819722, -12.5781664467208, -2.90943809569856), PC9 = c(-7.05331558116121, 
-12.1985749853038, 4.10613337565274, -20.0374908146072, -13.4276520442583, 
-2.77032899744962), PC10 = c(13.2132444645362, -2.82152344784948, 
-8.00771994862333, 5.3333694628255, -6.78114804624295, -5.63354620465723
), PC11 = c(-1.79050241538047, -6.57822316228283, -4.20132241912175, 
4.51589800987586, -1.67953673784626, 3.75349242056027), PC12 = c(7.83152902157972, 
-19.5950183628134, -9.38164109885085, 16.3690122002304, 0.0735031667926224, 
2.32446981112219), PC13 = c(-5.25219547328429, -7.13380025578665, 
6.09600053996671, -7.11925980557811, -5.61967462665635, -9.80647746645279
), PC14 = c(1.45188764160216, -25.5978607332207, 18.3643001800981, 
4.7265900178811, -15.071134439125, 11.3956478391763), PC15 = c(-7.3393199774991, 
-33.112294903764, -4.10920083616075, -11.3366588668303, 2.5968258382962, 
14.4766162599917), PC16 = c(0.529278749351839, -20.0921377085554, 
9.88228975185339, -0.264632117869371, 4.39109257712349, 17.8403742741107
), PC17 = c(-5.79919206631477, -34.4597935232432, -0.284077310829092, 
-1.45723530362592, 8.066297152665, -4.36479763922708), PC18 = c(6.16739223066386, 
-0.668191107754327, 7.17864592583405, 1.10258322969635, -2.88635363509576, 
-3.55077626222531), PC19 = c(-2.46075725680638, 11.2317147986833, 
10.7210109810505, -1.86175537360617, 9.00649577117842, -5.20964171868026
), PC20 = c(0.447290924483848, 0.882697730068387, -1.64992531160428, 
3.69926682756107, -8.45636279736397, 12.0178514144455), PC21 = c(7.77512402052619, 
-13.723689855566, 0.929876575603838, 7.20400850159562, -0.614055839592973, 
-6.15633968149479), PC22 = c(-1.56535673338356, -13.2971868706006, 
1.87562172644287, -3.28771663165701, -5.64722916304599, 0.636358407474463
), PC23 = c(0.164107670637167, -15.2249958235848, 8.00555210033773, 
2.0662276295149, 7.73028430813706, -2.32179860594496), PC24 = c(-1.8934805361982, 
8.21971891071679, 3.08512611513449, -0.628702548440314, -0.233105377199397, 
2.87674317483379), PC25 = c(0.893451809081066, 6.60513492724147, 
8.88171627539804, 2.97249584622476, -17.4778489423161, -4.58539478100194
), PC26 = c(-1.32955071985976, 11.9145713692928, -3.79820868194203, 
4.91276198192432, 1.14456788292366, 9.69280466752626), PC27 = c(5.80488907470531, 
-9.84420624259338, 2.14543167774679, -3.04254310413812, 5.7902970935943, 
-3.75331337674036), PC28 = c(-8.18472344420157, 1.65255506997329, 
7.07760527456274, -6.32026527255729, -4.33442214041778, -6.65351307662841
), PC29 = c(1.75032780020844, 15.5611773097845, -2.52903882532741, 
2.53566972972068, 6.44542594461733, -2.73677227120317), PC30 = c(-0.862387620806526, 
-14.0405815436268, -7.08059737134561, -0.429947697667332, -4.93506927070922, 
-7.24877851150857), PC31 = c(5.04914290995488, 1.94876316261089, 
-1.44943546186944, 0.589695885543367, 7.55928674782029, -2.70932468259665
), PC32 = c(-0.331134735300882, 6.19579420256524, -1.11785338261286, 
-1.29691032897408, 20.2001081109543, 7.8570225951223), PC33 = c(4.89375087245026, 
6.48463626836495, 6.73612277868434, 4.24109357290756, 1.02817278604743, 
0.680027817141749), PC34 = c(-0.800041139194579, -1.88905732488826, 
1.7772915935601, -0.499932283505083, 10.7430548643924, -6.53775164240871
), PC35 = c(5.12118821250308, -3.98313005901599, -4.52005990894197, 
-3.07369863487262, 3.92078873433114, -2.18933519508166), PC36 = c(-2.54985917927219, 
-1.70921978278497, -2.44961274490961, 1.56802927495698, 7.08687990990386, 
-0.604700521943517), PC37 = c(5.1747232970747, -5.34247962945995, 
-1.83839184464979, 6.70262336281884, -1.10932786180704, -3.25652639774021
), PC38 = c(-4.18410989825183, -6.98950710609193, 0.866526234992652, 
-0.0950366191443256, 3.35399502292955, 2.90766983495248), PC39 = c(2.46730811173428, 
-0.455543469604487, -4.63050936679246, -1.34675190382428, -6.1200022250839, 
-3.40619104956874), PC40 = c(-0.731471474196848, -4.24515300461387, 
-3.43245666463953, 3.70020703587818, -8.76472221293956, -1.1281798870577
), PC41 = c(-3.79301551015471, -5.25686203441764, 6.76297802293118, 
-3.68970972173239, 4.35055761452324, -18.4180107861132), PC42 = c(4.83388024710314, 
-0.25083519933247, -3.21152818097955, 5.96597185780427, 4.19254774340514, 
-8.18426155110418), PC43 = c(-0.217047959384719, -1.13621909801165, 
-4.4592933756817, -6.96360564960356, 2.27400449542372, -2.86813634075033
), PC44 = c(-3.33545179774935, 6.11834882717519, -0.264585462886141, 
-7.6792938724774, -3.99915221656525, -2.5294702493956), PC45 = c(2.77954857939566, 
7.82470034842594, -3.52534065178766, -2.56221337540028, 7.09562358045148, 
-1.49373245991455), PC46 = c(-1.60423065922446, -0.428508391589366, 
4.03490498808649, 2.12844259167901, -1.3678347436909, -6.13180626071563
), PC47 = c(-3.20068124812043, 5.06644140525654, 7.37963017443048, 
-4.84325578581087, -17.680506272578, 0.560814898057312), PC48 = c(2.91858197345977, 
-1.11915083153502, 3.47278363466071, 1.21240736359339, -5.58511090848592, 
5.52652026954627), PC49 = c(3.84744380211926, 0.861663719832773, 
-1.40060221851844, 1.62791310594578, -2.52243080963911, 0.361029214307694
), PC50 = c(5.15785104158866, -0.319668135009027, 4.80115302565519, 
4.45746767521537, 2.76979916871901, -10.7678984312634), PC51 = c(-6.22760710964996, 
-3.55897006680048, -1.68421228474145, -1.51499187118043, 4.69802013777757, 
-7.25050359857057), PC52 = c(-2.26345921059907, 3.60461592062774, 
-1.37792205061882, 8.69053064558714, -10.7983766769631, -2.63687558522692
), PC53 = c(-1.65172511606967, 0.118920655863908, 6.29953754003559, 
-3.16092526827426, -3.64199764016276, -6.98013560579073), PC54 = c(6.17213064069784, 
3.78913668381605, 5.94121227070784, 1.6838389802013, 2.47727981128471, 
1.71804579216696), PC55 = c(-3.7893860872842, -0.325634230487849, 
-5.98312342448493, -5.37971579967361, -6.71876005026094, -4.19058766854014
)), row.names = c(NA, -6L), class = c("tbl_df", "tbl", "data.frame"
))

所以这里的前 12 列我想在我的第一个子集中将 PC1 添加到 PC10 时保持不变。类似地,我会再次保持前 12 个不变,然后将 PC11 添加到 PC20,这样数据帧的小子集直到我的最后一列第一个 11 例如作为每个数据帧子集的常量。

[1] "FAB"                "prior_malignancy"   "Age"                "BM_percentage"      "Cytogenetic_Code"   "Histologic_Subtype"
 [7] "Risk_Cyto"          "Risk_Molecular"     "Sex"                "TMB"                "WBC" 

Sample_ID FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code Histologic_Subt… Risk_Cyto Risk_Molecular Sex     TMB   WBC    PC1     PC2
  <chr>     <chr> <chr>            <dbl>         <dbl> <chr>            <chr>            <chr>     <chr>          <chr> <dbl> <dbl>  <dbl>   <dbl>
1 TCGA-AB-… M4    no                  63            82 Normal Karyotype NUP98 Transloca… Intermed… Poor           Male  0      76.7 -25.4   14.5  
2 TCGA-AB-… M0    no                  39            83 Complex Cytogen… Complex Cytogen… Poor      Poor           Male  0.733   5    38.6  -27.8  
3 TCGA-AB-… M4    no                  76            91 Normal Karyotype Normal Karyotype Intermed… Intermediate   Fema… 0.3     5   -18.9   -0.318
4 TCGA-AB-… M2    no                  62            72 Normal Karyotype NUP98 Transloca… Intermed… Poor           Fema… 0.267  27.7   3.77   6.17 
5 TCGA-AB-… M1    no                  42            68 Complex Cytogen… Complex Cytogen… Poor      Poor           Male  0.467  10.7  -5.03  -9.29 
6 TCGA-AB-… M3    no                  42            88 PML-RARA         PML-RARA         Good      Good           Male  0.333   2.1  21.5   35.1 

我的 objective 是 运行 运行 因为没有这么大的组合需要很多时间,所以在一种粗略的方法,我认为如果可以拆分数据框,运行 会更容易。如果有更快的方法来执行下面的代码,我会很高兴知道。

非常感谢任何帮助或建议。

models <- lapply(frms, function(x) anova(lm(x, data = tcga_mrna.pcs55)))

试试吧!我搜索了很多但无法找到一个简单的解决方案所以这是一个如何将较短的数据帧放入列表中的建议。这很乏味,但是一旦你得到一个列表,你就可以将你的操作应用于列表的每个元素:

我找到的最近的解决方案在这里:。但是这里只在常量列中增加了一列!

library(dplyr)

col1_12 <- df %>% 
  select(1:12)

PC1_PC10 <- df %>% 
  select(1, 13:22) %>% 
  right_join(col1_12, by = "Sample_ID")
PC11_PC20 <- df %>% 
  select(1, 23:32) %>% 
  right_join(col1_12, by = "Sample_ID")
PC21_PC30 <- df %>% 
  select(1, 33:42) %>% 
  right_join(col1_12, by = "Sample_ID")
PC31_PC40 <- df %>% 
  select(1, 43:52) %>% 
  right_join(col1_12, by = "Sample_ID")
PC41_PC50 <- df %>% 
  select(1, 53:62) %>% 
  right_join(col1_12, by = "Sample_ID")
PC51_PC55 <- df %>% 
  select(1, 63:67) %>% 
  right_join(col1_12, by = "Sample_ID")

list_of_dfs <- list(PC1_PC10, PC11_PC20, PC21_PC30,
                    PC31_PC41, PC41_PC50, PC51_PC55)

list_of_dfs

输出:

> list_of_dfs
[[1]]
# A tibble: 6 x 22
  Sample_ID       PC1     PC2     PC3    PC4     PC5    PC6    PC7    PC8    PC9  PC10 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype  Risk_Cyto Risk_Molecular Sex     TMB   WBC
  <chr>         <dbl>   <dbl>   <dbl>  <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>               <chr>     <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856 -25.4   14.5   -10.7     1.18 -14.8    0.695 -16.7    2.80  -7.05 13.2  M4    no                  63            82 Normal Karyotype     NUP98 Translocation Intermed~ Poor           Male  0      76.7
2 TCGA-AB-2849  38.6  -27.8    28.1   -21.0   17.9   -7.46   14.4   -6.64 -12.2  -2.82 M0    no                  39            83 Complex Cytogenetics Complex Cytogeneti~ Poor      Poor           Male  0.733   5  
3 TCGA-AB-2971 -18.9   -0.318   5.88  -13.7    8.90  -9.49   16.1  -12.9    4.11 -8.01 M4    no                  76            91 Normal Karyotype     Normal Karyotype    Intermed~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930   3.77   6.17  -26.5     4.65  -0.551  5.28   -9.87  -2.18 -20.0   5.33 M2    no                  62            72 Normal Karyotype     NUP98 Translocation Intermed~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891  -5.03  -9.29   -0.896   6.11   5.91   2.86   -8.28 -12.6  -13.4  -6.78 M1    no                  42            68 Complex Cytogenetics Complex Cytogeneti~ Poor      Poor           Male  0.467  10.7
6 TCGA-AB-2872  21.5   35.1    23.3     1.09  13.7   -2.54   -3.15  -2.91  -2.77 -5.63 M3    no                  42            88 PML-RARA             PML-RARA            Good      Good           Male  0.333   2.1

[[2]]
# A tibble: 6 x 22
  Sample_ID     PC11     PC12  PC13   PC14   PC15    PC16    PC17   PC18  PC19   PC20 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto Risk_Molecular Sex     TMB   WBC
  <chr>        <dbl>    <dbl> <dbl>  <dbl>  <dbl>   <dbl>   <dbl>  <dbl> <dbl>  <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>     <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856 -1.79   7.83   -5.25   1.45  -7.34   0.529  -5.80   6.17  -2.46  0.447 M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Male  0      76.7
2 TCGA-AB-2849 -6.58 -19.6    -7.13 -25.6  -33.1  -20.1   -34.5   -0.668 11.2   0.883 M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.733   5  
3 TCGA-AB-2971 -4.20  -9.38    6.10  18.4   -4.11   9.88   -0.284  7.18  10.7  -1.65  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermed~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930  4.52  16.4    -7.12   4.73 -11.3   -0.265  -1.46   1.10  -1.86  3.70  M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891 -1.68   0.0735 -5.62 -15.1    2.60   4.39    8.07  -2.89   9.01 -8.46  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.467  10.7
6 TCGA-AB-2872  3.75   2.32   -9.81  11.4   14.5   17.8    -4.36  -3.55  -5.21 12.0   M3    no                  42            88 PML-RARA             PML-RARA             Good      Good           Male  0.333   2.1

[[3]]
# A tibble: 6 x 22
  Sample_ID       PC21    PC22    PC23   PC24    PC25  PC26  PC27  PC28  PC29    PC30 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto Risk_Molecular Sex     TMB   WBC
  <chr>          <dbl>   <dbl>   <dbl>  <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>     <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856   7.78   -1.57    0.164 -1.89    0.893 -1.33  5.80 -8.18  1.75  -0.862 M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Male  0      76.7
2 TCGA-AB-2849 -13.7   -13.3   -15.2    8.22    6.61  11.9  -9.84  1.65 15.6  -14.0   M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.733   5  
3 TCGA-AB-2971   0.930   1.88    8.01   3.09    8.88  -3.80  2.15  7.08 -2.53  -7.08  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermed~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930   7.20   -3.29    2.07  -0.629   2.97   4.91 -3.04 -6.32  2.54  -0.430 M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891  -0.614  -5.65    7.73  -0.233 -17.5    1.14  5.79 -4.33  6.45  -4.94  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.467  10.7
6 TCGA-AB-2872  -6.16    0.636  -2.32   2.88   -4.59   9.69 -3.75 -6.65 -2.74  -7.25  M3    no                  42            88 PML-RARA             PML-RARA             Good      Good           Male  0.333   2.1

[[4]]
# A tibble: 6 x 25
  Sample_ID      PC31   PC32  PC33   PC34  PC35   PC36  PC37    PC38   PC39   PC40   PC41   PC42   PC43 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code   Histologic_Subt~ Risk_Cyto Risk_Molecular Sex  
  <chr>         <dbl>  <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <chr> <chr>            <dbl>         <dbl> <chr>              <chr>            <chr>     <chr>          <chr>
1 TCGA-AB-2856  5.05  -0.331 4.89  -0.800  5.12 -2.55   5.17 -4.18    2.47  -0.731  -3.79  4.83  -0.217 M4    no                  63            82 Normal Karyotype   NUP98 Transloca~ Intermed~ Poor           Male 
2 TCGA-AB-2849  1.95   6.20  6.48  -1.89  -3.98 -1.71  -5.34 -6.99   -0.456 -4.25   -5.26 -0.251 -1.14  M0    no                  39            83 Complex Cytogenet~ Complex Cytogen~ Poor      Poor           Male 
3 TCGA-AB-2971 -1.45  -1.12  6.74   1.78  -4.52 -2.45  -1.84  0.867  -4.63  -3.43    6.76 -3.21  -4.46  M4    no                  76            91 Normal Karyotype   Normal Karyotype Intermed~ Intermediate   Fema~
4 TCGA-AB-2930  0.590 -1.30  4.24  -0.500 -3.07  1.57   6.70 -0.0950 -1.35   3.70   -3.69  5.97  -6.96  M2    no                  62            72 Normal Karyotype   NUP98 Transloca~ Intermed~ Poor           Fema~
5 TCGA-AB-2891  7.56  20.2   1.03  10.7    3.92  7.09  -1.11  3.35   -6.12  -8.76    4.35  4.19   2.27  M1    no                  42            68 Complex Cytogenet~ Complex Cytogen~ Poor      Poor           Male 
6 TCGA-AB-2872 -2.71   7.86  0.680 -6.54  -2.19 -0.605 -3.26  2.91   -3.41  -1.13  -18.4  -8.18  -2.87  M3    no                  42            88 PML-RARA           PML-RARA         Good      Good           Male 
# ... with 2 more variables: TMB <dbl>, WBC <dbl>

[[5]]
# A tibble: 6 x 22
  Sample_ID      PC41   PC42   PC43   PC44  PC45   PC46    PC47  PC48   PC49    PC50 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto  Risk_Molecular Sex     TMB   WBC
  <chr>         <dbl>  <dbl>  <dbl>  <dbl> <dbl>  <dbl>   <dbl> <dbl>  <dbl>   <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>      <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856  -3.79  4.83  -0.217 -3.34   2.78 -1.60   -3.20   2.92  3.85    5.16  M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermedi~ Poor           Male  0      76.7
2 TCGA-AB-2849  -5.26 -0.251 -1.14   6.12   7.82 -0.429   5.07  -1.12  0.862  -0.320 M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor       Poor           Male  0.733   5  
3 TCGA-AB-2971   6.76 -3.21  -4.46  -0.265 -3.53  4.03    7.38   3.47 -1.40    4.80  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermedi~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930  -3.69  5.97  -6.96  -7.68  -2.56  2.13   -4.84   1.21  1.63    4.46  M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermedi~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891   4.35  4.19   2.27  -4.00   7.10 -1.37  -17.7   -5.59 -2.52    2.77  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor       Poor           Male  0.467  10.7
6 TCGA-AB-2872 -18.4  -8.18  -2.87  -2.53  -1.49 -6.13    0.561  5.53  0.361 -10.8   M3    no                  42            88 PML-RARA             PML-RARA             Good       Good           Male  0.333   2.1

[[6]]
# A tibble: 6 x 17
  Sample_ID     PC51   PC52   PC53  PC54   PC55 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto    Risk_Molecular Sex      TMB   WBC
  <chr>        <dbl>  <dbl>  <dbl> <dbl>  <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>        <chr>          <chr>  <dbl> <dbl>
1 TCGA-AB-2856 -6.23  -2.26 -1.65   6.17 -3.79  M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermediate Poor           Male   0      76.7
2 TCGA-AB-2849 -3.56   3.60  0.119  3.79 -0.326 M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor         Poor           Male   0.733   5  
3 TCGA-AB-2971 -1.68  -1.38  6.30   5.94 -5.98  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermediate Intermediate   Female 0.3     5  
4 TCGA-AB-2930 -1.51   8.69 -3.16   1.68 -5.38  M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermediate Poor           Female 0.267  27.7
5 TCGA-AB-2891  4.70 -10.8  -3.64   2.48 -6.72  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor         Poor           Male   0.467  10.7
6 TCGA-AB-2872 -7.25  -2.64 -6.98   1.72 -4.19  M3    no                  42            88 PML-RARA             PML-RARA             Good         Good           Male   0.333   2.1