在 python 上使用混淆矩阵绘制分类结果
Plotting classification results with confusion matrices on python
我正在对我的 data 执行最小二乘法分类并且我能够获得我的权重并且我决定绘制一条决策边界线。但是我需要使用混淆矩阵来显示我的分类结果。我打算使用 from sklearn.metrics import confusion_matrix
并且我打算将 t
分配为我的 prediction
但是我不确定如何获得我的 actual
结果来计算矩阵。我从来没有设计过,所以我可能会弄错。
import numpy as np
import matplotlib.pyplot as plt
data=np.loadtxt("MyData_A.txt")
x=data[:,0:2] #the data points
t=data[:,2] #class which data points belong to either 1s or 0s
x0=np.ones((len(x),1)) # creat array of ones as matrix (nx1) where n is number of points
X=np.append(x, x0, axis=1) # add column x0 to data
# w= ( (((X^T)X)^-1 )X^T )t
XT_X=np.dot(X.T, X) # (X^T)X
inv_XT_X=np.linalg.inv(XT_X) # (X^T)X)^-1
X_tot=np.dot(inv_XT_X, X.T) # ((X^T)X)^-1 )X^T
w=np.dot(X_tot, t) # ( (((X^T)X)^-1 )X^T )t
x1_line = np.array([-1, 2])
x2_line = -w[2] / w[1] - (w[0] / w[1]) * x1_line
color_cond=['r' if t==1 else 'b' for t in t]
plt.scatter(x[:,0],x[:,1],color=color_cond)
plt.plot(x1_line,x2_line,color='k')
plt.xlabel('X1')
plt.ylabel('X2')
plt.ylim(-2,2)
plt.title('Training Data (X1,X2)')
plt.show()
下面是plot得到的
LogisticRegression
, confusion_matrix
and ConfusionMatrixDisplay
完成任务:
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
data = np.loadtxt("MyData_A.txt")
X = data[:, :-1]
y = data[:, -1].astype(int)
clf = LogisticRegression().fit(X, y)
pred = clf.predict(X)
cm = confusion_matrix(y, pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
from sklearn.metrics import confusion_matrix
import seaborn as sns
def predict(x1_line, x2_line, x):
d = (x[0] - x1_line[0]) * (x2_line[1] - x2_line[0]) - (x[1] - x2_line[0]) * (x1_line[1] - x1_line[0])
pred = 0 if d > 0 else 1
return pred
preds = np.array([predict(x1_line, x2_line, x12) for x12 in x])
conf_mat = confusion_matrix(t, preds)
sns.heatmap(conf_mat, annot=True);
plt.show()
我正在对我的 data 执行最小二乘法分类并且我能够获得我的权重并且我决定绘制一条决策边界线。但是我需要使用混淆矩阵来显示我的分类结果。我打算使用 from sklearn.metrics import confusion_matrix
并且我打算将 t
分配为我的 prediction
但是我不确定如何获得我的 actual
结果来计算矩阵。我从来没有设计过,所以我可能会弄错。
import numpy as np
import matplotlib.pyplot as plt
data=np.loadtxt("MyData_A.txt")
x=data[:,0:2] #the data points
t=data[:,2] #class which data points belong to either 1s or 0s
x0=np.ones((len(x),1)) # creat array of ones as matrix (nx1) where n is number of points
X=np.append(x, x0, axis=1) # add column x0 to data
# w= ( (((X^T)X)^-1 )X^T )t
XT_X=np.dot(X.T, X) # (X^T)X
inv_XT_X=np.linalg.inv(XT_X) # (X^T)X)^-1
X_tot=np.dot(inv_XT_X, X.T) # ((X^T)X)^-1 )X^T
w=np.dot(X_tot, t) # ( (((X^T)X)^-1 )X^T )t
x1_line = np.array([-1, 2])
x2_line = -w[2] / w[1] - (w[0] / w[1]) * x1_line
color_cond=['r' if t==1 else 'b' for t in t]
plt.scatter(x[:,0],x[:,1],color=color_cond)
plt.plot(x1_line,x2_line,color='k')
plt.xlabel('X1')
plt.ylabel('X2')
plt.ylim(-2,2)
plt.title('Training Data (X1,X2)')
plt.show()
下面是plot得到的
LogisticRegression
, confusion_matrix
and ConfusionMatrixDisplay
完成任务:
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
data = np.loadtxt("MyData_A.txt")
X = data[:, :-1]
y = data[:, -1].astype(int)
clf = LogisticRegression().fit(X, y)
pred = clf.predict(X)
cm = confusion_matrix(y, pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
from sklearn.metrics import confusion_matrix
import seaborn as sns
def predict(x1_line, x2_line, x):
d = (x[0] - x1_line[0]) * (x2_line[1] - x2_line[0]) - (x[1] - x2_line[0]) * (x1_line[1] - x1_line[0])
pred = 0 if d > 0 else 1
return pred
preds = np.array([predict(x1_line, x2_line, x12) for x12 in x])
conf_mat = confusion_matrix(t, preds)
sns.heatmap(conf_mat, annot=True);
plt.show()