Keras 的 NaN 随机搜索的调谐器分数
NaN for Keras Tuner score for RandomSearch
我正在试用 Keras (2.8.0) 自动调谐器来解决回归问题。这是我的代码:
import pandas as pd
from tensorflow import keras
from keras import layers, losses
from keras_tuner.tuners import RandomSearch
df = pd.read_csv('./datasets/data.csv')
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
def build_model(hp):
model = keras.Sequential()
for i in range(hp.Int('num_layers', 2, 20)):
model.add(layers.Dense(units=hp.Int('units_' + str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(1, activation='linear'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss=losses.MeanAbsoluteError(reduction="auto", name="mean_absolute_error"),
metrics=['mean_absolute_error'])
return model
tuner = RandomSearch(
build_model,
objective='val_mean_absolute_error',
max_trials=5,
executions_per_trial=3,
directory='project',
project_name='TunerTest')
model_summary = tuner.search_space_summary()
print(model_summary)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
tuner.search(X_train, y_train,
epochs=5,
validation_data=(X_test, y_test))
tuner.results_summary()
代码运行没有任何错误(假设)但在结果中,对于所有迭代,Score
是 nan
。以下是其中一次运行的输出:
Showing 10 best trials
<keras_tuner.engine.objective.Objective object at 0x7fef945235d0>
Trial summary
Hyperparameters:
num_layers: 12
units_0: 128
units_1: 224
learning_rate: 0.01
units_2: 32
units_3: 32
units_4: 32
units_5: 32
units_6: 32
units_7: 32
units_8: 32
units_9: 32
units_10: 32
units_11: 32
Score: nan
我在这里做错了什么?
这可能是由于您的数据具有 nan
个值或非常接近于零的值。另一个问题可能是数据的差异。也许尝试对其进行归一化以避免爆炸梯度或什至应用梯度剪裁。使用随机数据时,您的代码有效并且结果不是 nan
:
import pandas as pd
from tensorflow import keras
from keras import layers, losses
from keras_tuner.tuners import RandomSearch
import numpy as np
X = np.random.random((500, 5))
y = np.random.random((500, 1))
def build_model(hp):
model = keras.Sequential()
for i in range(hp.Int('num_layers', 2, 20)):
model.add(layers.Dense(units=hp.Int('units_' + str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(1, activation='linear'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss=losses.MeanAbsoluteError(reduction="auto", name="mean_absolute_error"),
metrics=['mean_absolute_error'])
return model
tuner = RandomSearch(
build_model,
objective='val_mean_absolute_error',
max_trials=5,
executions_per_trial=3,
directory='project',
project_name='TunerTest')
model_summary = tuner.search_space_summary()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
tuner.search(X_train, y_train,
epochs=5,
validation_data=(X_test, y_test))
tuner.results_summary()
...
Trial summary
Hyperparameters:
num_layers: 20
units_0: 512
units_1: 384
learning_rate: 0.01
units_2: 32
units_3: 32
units_4: 32
units_5: 32
units_6: 32
units_7: 32
units_8: 32
units_9: 32
units_10: 32
units_11: 32
units_12: 32
units_13: 32
units_14: 32
units_15: 32
units_16: 32
units_17: 32
units_18: 32
units_19: 32
Score: 0.24690431356430054
如果我没记错的话,这是 Krish Naik 的 Dl 视频中的一个例子;我尝试了完全相同的代码并遇到了以下问题。
我只是替换了数据集中的空值,它工作正常。
我正在试用 Keras (2.8.0) 自动调谐器来解决回归问题。这是我的代码:
import pandas as pd
from tensorflow import keras
from keras import layers, losses
from keras_tuner.tuners import RandomSearch
df = pd.read_csv('./datasets/data.csv')
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
def build_model(hp):
model = keras.Sequential()
for i in range(hp.Int('num_layers', 2, 20)):
model.add(layers.Dense(units=hp.Int('units_' + str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(1, activation='linear'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss=losses.MeanAbsoluteError(reduction="auto", name="mean_absolute_error"),
metrics=['mean_absolute_error'])
return model
tuner = RandomSearch(
build_model,
objective='val_mean_absolute_error',
max_trials=5,
executions_per_trial=3,
directory='project',
project_name='TunerTest')
model_summary = tuner.search_space_summary()
print(model_summary)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
tuner.search(X_train, y_train,
epochs=5,
validation_data=(X_test, y_test))
tuner.results_summary()
代码运行没有任何错误(假设)但在结果中,对于所有迭代,Score
是 nan
。以下是其中一次运行的输出:
Showing 10 best trials
<keras_tuner.engine.objective.Objective object at 0x7fef945235d0>
Trial summary
Hyperparameters:
num_layers: 12
units_0: 128
units_1: 224
learning_rate: 0.01
units_2: 32
units_3: 32
units_4: 32
units_5: 32
units_6: 32
units_7: 32
units_8: 32
units_9: 32
units_10: 32
units_11: 32
Score: nan
我在这里做错了什么?
这可能是由于您的数据具有 nan
个值或非常接近于零的值。另一个问题可能是数据的差异。也许尝试对其进行归一化以避免爆炸梯度或什至应用梯度剪裁。使用随机数据时,您的代码有效并且结果不是 nan
:
import pandas as pd
from tensorflow import keras
from keras import layers, losses
from keras_tuner.tuners import RandomSearch
import numpy as np
X = np.random.random((500, 5))
y = np.random.random((500, 1))
def build_model(hp):
model = keras.Sequential()
for i in range(hp.Int('num_layers', 2, 20)):
model.add(layers.Dense(units=hp.Int('units_' + str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(1, activation='linear'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss=losses.MeanAbsoluteError(reduction="auto", name="mean_absolute_error"),
metrics=['mean_absolute_error'])
return model
tuner = RandomSearch(
build_model,
objective='val_mean_absolute_error',
max_trials=5,
executions_per_trial=3,
directory='project',
project_name='TunerTest')
model_summary = tuner.search_space_summary()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
tuner.search(X_train, y_train,
epochs=5,
validation_data=(X_test, y_test))
tuner.results_summary()
...
Trial summary
Hyperparameters:
num_layers: 20
units_0: 512
units_1: 384
learning_rate: 0.01
units_2: 32
units_3: 32
units_4: 32
units_5: 32
units_6: 32
units_7: 32
units_8: 32
units_9: 32
units_10: 32
units_11: 32
units_12: 32
units_13: 32
units_14: 32
units_15: 32
units_16: 32
units_17: 32
units_18: 32
units_19: 32
Score: 0.24690431356430054
如果我没记错的话,这是 Krish Naik 的 Dl 视频中的一个例子;我尝试了完全相同的代码并遇到了以下问题。 我只是替换了数据集中的空值,它工作正常。