在 PyTorch 中提前停止

early stopping in PyTorch

我尝试实现提前停止功能以避免我的神经网络模型过度拟合。我很确定逻辑没问题,但由于某种原因,它不起作用。 我希望当验证损失大于某些时期的训练损失时,提前停止函数 returns 为真。但它 returns 一直都是假的,即使验证损失变得比训练损失大得多。请问您能看出问题出在哪里吗?

提前停止功能

def early_stopping(train_loss, validation_loss, min_delta, tolerance):

    counter = 0
    if (validation_loss - train_loss) > min_delta:
        counter +=1
        if counter >= tolerance:
          return True

在训练期间调用函数

for i in range(epochs):
    
    print(f"Epoch {i+1}")
    epoch_train_loss, pred = train_one_epoch(model, train_dataloader, loss_func, optimiser, device)
    train_loss.append(epoch_train_loss)

    # validation 

    with torch.no_grad(): 
       epoch_validate_loss = validate_one_epoch(model, validate_dataloader, loss_func, device)
       validation_loss.append(epoch_validate_loss)
    
    # early stopping
    if early_stopping(epoch_train_loss, epoch_validate_loss, min_delta=10, tolerance = 20):
      print("We are at epoch:", i)
      break

编辑: 训练和验证损失:

编辑 2:

def train_validate (model, train_dataloader, validate_dataloader, loss_func, optimiser, device, epochs):
    preds = []
    train_loss =  []
    validation_loss = []
    min_delta = 5
    

    for e in range(epochs):
        
        print(f"Epoch {e+1}")
        epoch_train_loss, pred = train_one_epoch(model, train_dataloader, loss_func, optimiser, device)
        train_loss.append(epoch_train_loss)

        # validation 
        with torch.no_grad(): 
           epoch_validate_loss = validate_one_epoch(model, validate_dataloader, loss_func, device)
           validation_loss.append(epoch_validate_loss)
        
        # early stopping
        early_stopping = EarlyStopping(tolerance=2, min_delta=5)
        early_stopping(epoch_train_loss, epoch_validate_loss)
        if early_stopping.early_stop:
            print("We are at epoch:", e)
            break

    return train_loss, validation_loss

你的实现的问题是,每当你调用 early_stopping() 时,计数器是 re-initialized 和 0

这是使用 oo-oriented 方法的工作解决方案,其中 __call__()__init__() 代替:

class EarlyStopping():
    def __init__(self, tolerance=5, min_delta=0):

        self.tolerance = tolerance
        self.min_delta = min_delta
        self.counter = 0
        self.early_stop = False

    def __call__(self, train_loss, validation_loss):
        if (validation_loss - train_loss) > self.min_delta:
            self.counter +=1
            if self.counter >= self.tolerance:  
                self.early_stop = True

这样称呼它:

early_stopping = EarlyStopping(tolerance=5, min_delta=10)

for i in range(epochs):
    
    print(f"Epoch {i+1}")
    epoch_train_loss, pred = train_one_epoch(model, train_dataloader, loss_func, optimiser, device)
    train_loss.append(epoch_train_loss)

    # validation 
    with torch.no_grad(): 
       epoch_validate_loss = validate_one_epoch(model, validate_dataloader, loss_func, device)
       validation_loss.append(epoch_validate_loss)
    
    # early stopping
    early_stopping(epoch_train_loss, epoch_validate_loss)
    if early_stopping.early_stop:
      print("We are at epoch:", i)
      break

示例:

early_stopping = EarlyStopping(tolerance=2, min_delta=5)

train_loss = [
    642.14990234,
    601.29278564,
    561.98400879,
    530.01501465,
    497.1098938,
    466.92709351,
    438.2364502,
    413.76028442,
    391.5090332,
    370.79074097,
]
validate_loss = [
    509.13619995,
    497.3125,
    506.17315674,
    497.68960571,
    505.69918823,
    459.78610229,
    480.25592041,
    418.08630371,
    446.42675781,
    372.09902954,
]

for i in range(len(train_loss)):

    early_stopping(train_loss[i], validate_loss[i])
    print(f"loss: {train_loss[i]} : {validate_loss[i]}")
    if early_stopping.early_stop:
        print("We are at epoch:", i)
        break

输出:

loss: 642.14990234 : 509.13619995
loss: 601.29278564 : 497.3125
loss: 561.98400879 : 506.17315674
loss: 530.01501465 : 497.68960571
loss: 497.1098938 : 505.69918823
loss: 466.92709351 : 459.78610229
loss: 438.2364502 : 480.25592041
We are at epoch: 6