计算分组数据的平均 rle$lengths

Calculating average rle$lengths over grouped data

我想使用 rle() 对分组数据计算状态持续时间。这是测试数据框:

DF <- read.table(text="Time,x,y,sugar,state,ID
0,31,21,0.2,0,L0
1,31,21,0.65,0,L0
2,31,21,1.0,0,L0
3,31,21,1.5,1,L0
4,31,21,1.91,1,L0
5,31,21,2.3,1,L0
6,31,21,2.75,0,L0
7,31,21,3.14,0,L0
8,31,22,3.0,2,L0
9,31,22,3.47,1,L0
10,31,22,3.930,0,L0
0,37,1,0.2,0,L1
1,37,1,0.65,0,L1
2,37,1,1.089,0,L1
3,37,1,1.5198,0,L1
4,36,1,1.4197,2,L1
5,36,1,1.869,0,L1
6,36,1,2.3096,0,L1
7,36,1,2.738,0,L1
8,36,1,3.16,0,L1
9,36,1,3.5703,0,L1
10,36,1,3.970,0,L1
", header = TRUE, sep =",")

我想知道状态 == 1 的平均长度,按 ID 分组。我创建了一个函数,灵感来自:https://www.reddit.com/r/rstats/comments/brpzo9/tidyverse_groupby_and_rle/ 计算 rle 平均部分:

rle_mean_lengths = function(x, value) {
  r = rle(x)
  cond = r$values == value 
  data.frame(count = sum(cond), avg_length = mean(r$lengths[cond]))
}

然后我在分组方面添加:

DF %>% group_by(ID) %>% do(rle_mean_lengths(DF$state,1))

但是,生成的值不正确:

ID count avg_length
1 L0 2 2
2 L1 2 2

L0 是正确的,L1 没有状态 == 1 的实例,因此平均值应该为零或 NA。 我将问题分解为总结:

DF %>% group_by(ID) %>% summarize_at(vars(state),list(name=mean)) # This works but if I use summarize it gives me weird values again.

如何为 do() 执行等效的 summarize_at()?或者还有其他修复方法吗?谢谢

由于它是 data.frame 列,我们可能需要 unnest 之后

library(dplyr)
library(tidyr)
DF %>% 
 group_by(ID) %>%
  summarise(new = list(rle_mean_lengths(state, 1)), .groups = "drop") %>%
  unnest(new)

或删除 listunpack

 DF %>% 
  group_by(ID) %>%
  summarise(new = rle_mean_lengths(state, 1), .groups = "drop") %>% 
  unpack(new)
# A tibble: 2 × 3
  ID    count avg_length
  <chr> <int>      <dbl>
1 L0        2          2
2 L1        0        NaN

在 OP 的 do 代码中,应提取的列不应来自整个数据,而应来自来自 lhs 的数据,即 .(注意 do 有点过时了。所以最好将 summariseunnest/unpack

一起使用
DF %>% 
  group_by(ID) %>%
  do(rle_mean_lengths(.$state,1))
# A tibble: 2 × 3
# Groups:   ID [2]
  ID    count avg_length
  <chr> <int>      <dbl>
1 L0        2          2
2 L1        0        NaN