创建数据框时出错 "pandas.errors.InvalidIndexError"
Error "pandas.errors.InvalidIndexError" while Creating Dataframe
我正在尝试在迭代时从另一个 Dataframe 的行创建一个 Dataframe。下面是我的代码:
df_cols = ["categoryname", "issueid", "module", "type", "description", "sourcefile", "line", "description"]
mydataframe = pd.DataFrame()
for index, row in nw.iterrows():
if (row['issueid'] in nw1['issueid'].values):
print(str(row['issueid']) + "is present")
else:
print(str(row['issueid']) + " is not present")
# mydataframe=mydataframe.append(row, ignore_index=True)
new_df = pd.DataFrame([row], columns=df_cols) #ERROR
#mydataframe = pd.concat([mydataframe, new_df], axis=0, ignore_index=True)
对于行:
new_df = pd.DataFrame([row], columns=df_cols)
我遇到错误:
pandas.errors.InvalidIndexError: Reindexing only valid with uniquely valued Index objects
通过将元组“行”转换为列表并将其作为参数传递给 Dataframe 解决,如下所示:
df_cols = ["categoryname", "issueid", "module", "type", "description", "sourcefile", "line", "description"]
mydataframe = pd.DataFrame()
for index, row in nw.iterrows():
if (row['issueid'] in nw1['issueid'].values):
print(str(row['issueid']) + "is present")
else:
print(str(row['issueid']) + " is not present")
# mydataframe=mydataframe.append(row, ignore_index=True)
new_df = pd.DataFrame([list(row)], columns=df_cols) #Works Now
#mydataframe = pd.concat([mydataframe, new_df], axis=0, ignore_index=True)
我正在尝试在迭代时从另一个 Dataframe 的行创建一个 Dataframe。下面是我的代码:
df_cols = ["categoryname", "issueid", "module", "type", "description", "sourcefile", "line", "description"]
mydataframe = pd.DataFrame()
for index, row in nw.iterrows():
if (row['issueid'] in nw1['issueid'].values):
print(str(row['issueid']) + "is present")
else:
print(str(row['issueid']) + " is not present")
# mydataframe=mydataframe.append(row, ignore_index=True)
new_df = pd.DataFrame([row], columns=df_cols) #ERROR
#mydataframe = pd.concat([mydataframe, new_df], axis=0, ignore_index=True)
对于行:
new_df = pd.DataFrame([row], columns=df_cols)
我遇到错误:
pandas.errors.InvalidIndexError: Reindexing only valid with uniquely valued Index objects
通过将元组“行”转换为列表并将其作为参数传递给 Dataframe 解决,如下所示:
df_cols = ["categoryname", "issueid", "module", "type", "description", "sourcefile", "line", "description"]
mydataframe = pd.DataFrame()
for index, row in nw.iterrows():
if (row['issueid'] in nw1['issueid'].values):
print(str(row['issueid']) + "is present")
else:
print(str(row['issueid']) + " is not present")
# mydataframe=mydataframe.append(row, ignore_index=True)
new_df = pd.DataFrame([list(row)], columns=df_cols) #Works Now
#mydataframe = pd.concat([mydataframe, new_df], axis=0, ignore_index=True)