如何根据最小值和最大值缩放和打印数组?
How to scale and print an array based on its minimum and maximum value?
我正在尝试根据其最小值和最大值缩放以下 NumPy 数组。
array = [[17405.051 17442.4 17199.6 17245.65 ]
[17094.949 17291.75 17091.15 17222.75 ]
[17289. 17294.9 17076.551 17153. ]
[17181.85 17235.1 17003.9 17222. ]]
使用的公式是:
m=(x-xmin)/(xmax-xmin)
其中m为单独缩放项,x为单独项,xmax为最高值,xmin为数组最小值。
我的问题是如何打印缩放数组?
P.S。 - 我不能使用 MinMaxScaler,因为我需要通过将给定数字(数组外)插入到上述公式中来缩放给定数字(数组外),其中包含给定数组的 xmin 和 xmax。
我尝试通过遍历数组来缩放单个项目,但我无法将缩放后的数组放在一起。
我是 NumPy 的新手,欢迎提出任何建议。
谢谢。
使用方法ndarray.min()
、ndarray.max()
或ndarray.ptp()
(获取数组中值的范围):
>>> ar = np.array([[17405.051, 17442.4, 17199.6, 17245.65 ],
... [17094.949, 17291.75, 17091.15, 17222.75 ],
... [17289., 17294.9, 17076.551, 17153. ],
... [17181.85, 17235.1, 17003.9, 17222. ]])
>>> min_val = ar.min()
>>> range_val = ar.ptp()
>>> (ar - min_val) / range_val
array([[0.91482554, 1. , 0.44629418, 0.55131129],
[0.2076374 , 0.65644242, 0.19897377, 0.4990878 ],
[0.65017104, 0.663626 , 0.16568073, 0.34002281],
[0.40581528, 0.527252 , 0. , 0.49737742]])
我觉得你应该多了解一下numpy的基本操作
import numpy as np
array_list = [[17405.051, 17442.4, 17199.6, 17245.65 ],
[17094.949, 17291.75, 17091.15, 17222.75 ],
[17289., 17294.9, 17076.551, 17153., ],
[17181.85, 17235.1, 17003.9, 17222. ]]
# Convert list into numpy array
array = np.array(array_list)
# Create empty list
scaled_array_list=[]
for x in array:
m = (x - np.min(array))/(np.max(array)-np.min(array))
scaled_array_list.append(m)
# Convert list into numpy array
scaled_array = np.array(scaled_array_list)
scaled_array
我的版本是按照您所说的遍历数组。
你也可以把所有的东西都放在一个函数里,以后再用:
def scaler(array_to_scale):
# Create empty list
scaled_array_list=[]
for x in array:
m = (x - np.min(array))/(np.max(array)-np.min(array))
scaled_array_list.append(m)
# Convert list into numpy array
scaled_array = np.array(scaled_array_list)
return scaled_array
# Here it is our input
array_list = [[17405.051, 17442.4, 17199.6, 17245.65 ],
[17094.949, 17291.75, 17091.15, 17222.75 ],
[17289., 17294.9, 17076.551, 17153., ],
[17181.85, 17235.1, 17003.9, 17222. ]]
# Convert list into numpy array
array = np.array(array_list)
scaler(array)
输出:
Out:
array([[0.91482554, 1. , 0.44629418, 0.55131129],
[0.2076374 , 0.65644242, 0.19897377, 0.4990878 ],
[0.65017104, 0.663626 , 0.16568073, 0.34002281],
[0.40581528, 0.527252 , 0. , 0.49737742]])
我正在尝试根据其最小值和最大值缩放以下 NumPy 数组。
array = [[17405.051 17442.4 17199.6 17245.65 ]
[17094.949 17291.75 17091.15 17222.75 ]
[17289. 17294.9 17076.551 17153. ]
[17181.85 17235.1 17003.9 17222. ]]
使用的公式是:
m=(x-xmin)/(xmax-xmin)
其中m为单独缩放项,x为单独项,xmax为最高值,xmin为数组最小值。
我的问题是如何打印缩放数组?
P.S。 - 我不能使用 MinMaxScaler,因为我需要通过将给定数字(数组外)插入到上述公式中来缩放给定数字(数组外),其中包含给定数组的 xmin 和 xmax。
我尝试通过遍历数组来缩放单个项目,但我无法将缩放后的数组放在一起。
我是 NumPy 的新手,欢迎提出任何建议。 谢谢。
使用方法ndarray.min()
、ndarray.max()
或ndarray.ptp()
(获取数组中值的范围):
>>> ar = np.array([[17405.051, 17442.4, 17199.6, 17245.65 ],
... [17094.949, 17291.75, 17091.15, 17222.75 ],
... [17289., 17294.9, 17076.551, 17153. ],
... [17181.85, 17235.1, 17003.9, 17222. ]])
>>> min_val = ar.min()
>>> range_val = ar.ptp()
>>> (ar - min_val) / range_val
array([[0.91482554, 1. , 0.44629418, 0.55131129],
[0.2076374 , 0.65644242, 0.19897377, 0.4990878 ],
[0.65017104, 0.663626 , 0.16568073, 0.34002281],
[0.40581528, 0.527252 , 0. , 0.49737742]])
我觉得你应该多了解一下numpy的基本操作
import numpy as np
array_list = [[17405.051, 17442.4, 17199.6, 17245.65 ],
[17094.949, 17291.75, 17091.15, 17222.75 ],
[17289., 17294.9, 17076.551, 17153., ],
[17181.85, 17235.1, 17003.9, 17222. ]]
# Convert list into numpy array
array = np.array(array_list)
# Create empty list
scaled_array_list=[]
for x in array:
m = (x - np.min(array))/(np.max(array)-np.min(array))
scaled_array_list.append(m)
# Convert list into numpy array
scaled_array = np.array(scaled_array_list)
scaled_array
我的版本是按照您所说的遍历数组。
你也可以把所有的东西都放在一个函数里,以后再用:
def scaler(array_to_scale):
# Create empty list
scaled_array_list=[]
for x in array:
m = (x - np.min(array))/(np.max(array)-np.min(array))
scaled_array_list.append(m)
# Convert list into numpy array
scaled_array = np.array(scaled_array_list)
return scaled_array
# Here it is our input
array_list = [[17405.051, 17442.4, 17199.6, 17245.65 ],
[17094.949, 17291.75, 17091.15, 17222.75 ],
[17289., 17294.9, 17076.551, 17153., ],
[17181.85, 17235.1, 17003.9, 17222. ]]
# Convert list into numpy array
array = np.array(array_list)
scaler(array)
输出:
Out:
array([[0.91482554, 1. , 0.44629418, 0.55131129],
[0.2076374 , 0.65644242, 0.19897377, 0.4990878 ],
[0.65017104, 0.663626 , 0.16568073, 0.34002281],
[0.40581528, 0.527252 , 0. , 0.49737742]])