将索引簇的多维数组转换为一维分类数组

Convert multidimensional array of indices clusters to a 1D categorical array

我有一个函数,它 return 是一个包含 k 个簇的多维数组。我的算法大部分都有效,但我需要它 return 分类数组而不是多维数组。这是我的代码:

import numpy as np
import pandas as pd
import random

from bokeh.sampledata.iris import flowers
from typing import List, Tuple

def get_closest(data_point: np.ndarray, centroids: np.ndarray):
    """
    Takes a data_point and a nd.array of multiple centroids and returns the index of the centroid closest to data_point
    by computing the euclidean distance for each centroid and picking the closest.
    """
    N = centroids.shape[0]
    dist = np.empty(N)
    for i, c in enumerate(centroids): 
        dist[i] = np.linalg.norm(c - data_point)
    index_min = np.argmin(dist)
    return index_min
# Use these centroids in the first iteration of you algorithm if "Random Centroids" is set to False in the Dashboard
DEFAULT_CENTROIDS = np.array([[5.664705882352942, 3.0352941176470587, 3.3352941176470585, 1.0176470588235293],
                              [5.446153846153847, 3.2538461538461543, 2.9538461538461536, 0.8846153846153846],
                              [5.906666666666667, 2.933333333333333, 4.1000000000000005, 1.3866666666666667],
                              [5.992307692307692, 3.0230769230769234, 4.076923076923077, 1.3461538461538463],
                              [5.747619047619048, 3.0714285714285716, 3.6238095238095243, 1.1380952380952383],
                              [6.161538461538462, 3.030769230769231, 4.484615384615385, 1.5307692307692309],
                              [6.294117647058823, 2.9764705882352938, 4.494117647058823, 1.4],
                              [5.853846153846154, 3.215384615384615, 3.730769230769231, 1.2076923076923078],
                              [5.52857142857143, 3.142857142857143, 3.107142857142857, 1.007142857142857],
                              [5.828571428571429, 2.9357142857142855, 3.664285714285714, 1.1]])
def k_means(data_np: np.ndarray, k:int=3, n_iter:int=500, random_initialization=False) -> Tuple[np.ndarray, int]:
    """
    :param data: your data, a numpy array with shape (n_entries, n_features)
    :param k: The number of clusters to compute
    :param n_iter: The maximal numnber of iterations
    :param random_initialization: If False, DEFAULT_CENTROIDS are used as the centroids of the first iteration.

    :return: A tuple (cluster_indices: A numpy array of cluster_indices,
                      n_iterations: the number of iterations it took until the algorithm terminated)
    """
    # Initialize the algorithm by assigning random cluster labels to each entry in your dataset
    k=k+1
    centroids = data_np[random.sample(range(len(data_np)), k)]
    labels = np.array([np.argmin([(el - c) ** 2 for c in centroids]) for el in data_np])
    clustering = []
    for k in range(k):
        clustering.append(data_np[labels == k])

    # Implement K-Means with a while loop, which terminates either if the centroids don't move anymore, or
    # if the number of iterations exceeds n_iter
    counter = 0
    while counter < n_iter:
        # Compute the new centroids, if random_initialization is false use DEFAULT_CENTROIDS in the first iteration
        # if you use DEFAULT_CENTROIDS, make sure to only pick the k first entries from them.
        if random_initialization is False and counter == 0:
            centroids = DEFAULT_CENTROIDS[random.sample(range(len(DEFAULT_CENTROIDS)), k)]

        # Update the cluster labels using get_closest
        labels = np.array([get_closest(el, centroids) for el in data_np])
        clustering = []
        for i in range(k):
            clustering.append(np.where(labels == i)[0])
            
        counter += 1
        
        new_centroids = np.zeros_like(centroids)
        for i in range(k):
            if len(clustering[i]) > 0:
                new_centroids[i] = data_np[clustering[i]].mean(axis=0)
            else:
                new_centroids[i] = centroids[i]

        # if the centroids didn't move, exit the while loop
        if clustering is not None and (centroids == new_centroids).sum() == 0:
            break    
        else:
            centroids = new_centroids
        pass

    # return the final cluster labels and the number of iterations it took
    return clustering, counter
# read and store the dataset
data: pd.DataFrame = flowers.copy(deep=True)
data = data.drop(['species'], axis=1)
data_np = np.asarray(data)

clustering, counter = k_means(data_np,4,500,False)

所以clustering看起来是这样

clustering
[array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
        34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 57,
        98], dtype=int64),
 array([60, 93], dtype=int64),
 array([ 50,  51,  52,  53,  54,  55,  56,  58,  61,  62,  63,  65,  66,
         67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,  79,
         80,  81,  82,  83,  86,  87,  89,  90,  91,  92,  94,  95,  96,
         97,  99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
        111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
        124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136,
        137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
       dtype=int64),
 array([59, 64, 84, 85, 88], dtype=int64)]

然而,我正在寻找的是一个像

这样的数组
clustering
array([1, 3, 2, ..., 4, 1, 4], dtype=int64)]

此外,while 循环总是在 1 次迭代后终止,但情况不应该如此。

counter
1

编辑1: 代码继续如下。

def callback(attr, old, new):
    # recompute the clustering and update the colors of the data points based on the result
    k = slider_k.valued_throttled
    init = select_init.value
    clustering_new, counter_new = k_means(data_np,k,500,init)
    pass
# Create the dashboard
# 1. A Select widget to choose between random initialization or using the DEFAULT_CENTROIDS on top
select_init = Select(title='Random Centroids',value='False',options=['True','False'])
# 2. A Slider to choose a k between 2 and 10 (k being the number of clusters)
slider_k = Slider(start=2,end=10,value=3,step=1,title='k')
# 4. Connect both widgets to the callback
select_init.on_change('value',callback)
slider_k.on_change('value_throttled',callback)
# 3. A ColumnDataSource to hold the data and the color of each point you need
source = ColumnDataSource(dict(petal_length=data['petal_length'],sepal_length=data['sepal_length'],petal_width=data['petal_width'],clustering=clustering))
# 4. Two plots displaying the dataset based on the following table, have a look at the images
# in the handout if this confuses you.
#
#       Axis/Plot   Plot1   Plot2
#       X   Petal length    Petal width
#       Y   Sepal length    Petal length
#
# Use a categorical color mapping, such as Spectral10, have a look at this section of the bokeh docs:
# https://docs.bokeh.org/en/latest/docs/user_guide/categorical.html#filling
plot1 = figure(plot_width=100,plot_height=100,title='Scatterplot of flowers distribution by petal length and sepal length')
plot1.yaxis.axis_label = 'Sepal length'
plot1.xaxis.axis_label = 'Petal length'
scatter1 = plot1.scatter(x='petal_length',y='sepal_length',source=source,fill_color=factor_cmap('clustering', palette=Spectral10, factors=clustering))

plot2 = figure(plot_width=100,plot_height=100,title='Scatterplot of flowers distribution by petal width and petal length')
plot2.yaxis.axis_label = 'Petal length'
plot2.xaxis.axis_label = 'Petal width'
scatter2 = plot2.scatter(x='petal_width',y='petal_length',source=source,fill_color=factor_cmap('clustering', palette=Spectral10, factors=clustering))
# 5. A Div displaying the currently number of iterations it took the algorithm to update the plot.
div = Div(text='Number of iterations: ')

因此最终结果应该是这样的

我不确定我是否理解您的需求。 如果 clustering 包含一个数组列表,其中每个数组代表一个簇,而 ith 数组包含属于 ith 簇的样本的索引,您需要将其转换为一个大小为 number_of_samples 的向量,表示每个样本所属的簇,您可以这样做:

def to_classes(clustering):
    # Get number of samples (you can pass it directly to the function)
    num_samples = sum(x.shape[0] for x in clustering)
    indices = np.empty((num_samples,))  # An empty array with correct size
    for ith, cluster in enumerate(clustering):
        # use cluster indices to assign to correct the cluster index
        indices[cluster] = ith
    return indices

因为break条件错误,单次迭代后就存在循环,我想你想要的其实是

# note the !=
if clustering is not None and (centroids != new_centroids).sum() == 0:
    break