在 Fortran 中填充(对称)距离矩阵的最 cpu 有效方法

Most cpu-efficient way to populate a (symmetric) distance matrix in fortran

我正在致力于在有限元问题中实现周期性边界条件,并且我想将边界 A 上的节点与边界 B 上的节点配对,给定一个向量 trans 将边界 A 与边界 B 对齐。边界 A 中的节点在列表 g1 中给出;在 B 中,它们是 g2。在 mesh%nodes(:,nodenum).

中查找节点坐标

我决定通过为每个节点创建一个距离矩阵来做到这一点,我意识到这不是最有效的方法,老实说,我不希望通过优化此算法来节省大量时间。这个问题比较学术

我知道 Fortran 以列优先顺序存储,另一方面,数组将是对称的,当数组完成时,我想获取它的列切片以找到最近的节点。所以问题是应该如何填充它?

这是我天真的尝试。

subroutine autopair_nodes_in_groups(mesh, g1, g2, pairs, trans)

    type(meshdata)                              :: mesh
    
    
    integer(kind=sp)                            :: i,j
    integer(kind=sp),dimension(:)               :: g1,g2
    integer(kind=sp),dimension(:,:)             :: pairs
    
    real(kind=dp)                               :: trans(3) !xyz translate
    
    real(kind=dp)                               :: dist_mat(size(g1),size(g2)) 
    real(kind=dp)                               :: p1(3), p2(3)
    
    dist_mat = -1.0_wp
    
    ! make a distance matrix
    do j=1,size(g2)
        p2 = mesh%nodes(1:3,g2(j))-trans
        do i=1,j
            p1 = mesh%nodes(1:3,g1(i))
            dist_mat(i,j) = norm2(p1-p2)              !equivalent to norm2(n1pos+trans-n2pos)
            if (i.ne.j) dist_mat(j,i) = dist_mat(i,j) !fill symmetry
        end do
    end do
    
    ! Remainder of routine to find nearest nodes
    
    
end subroutine autopair_nodes_in_groups

据我所知,问题是在使数组对称之前,这在内存访问方面是有效的。

要进行快速 nearest-neighbor 搜索,您应该实现搜索复杂度为 O(log(N)) 的树结构,而不是查看所有 point-to-point 距离,即 O(N^ 2).

无论如何,关于对称矩阵处理,您将拥有:

! Storage size of a symmetric matrix
elemental integer function sym_size(N)
   integer, intent(in) :: N
   sym_size = (N*(N+1))/2
end function sym_size

! Compute pointer to an element in the symmetric matrix array
elemental integer function sym_ptr(N,i,j) 
   integer, intent(in) :: N,i,j

   integer :: irow,jcol

   ! Column-major storage
   irow = merge(i,j,i>=j)
   jcol = merge(j,i,i>=j)

   ! Skip previous columns
   sym_ptr = N*(jcol-1)-((jcol-1)*(jcol-2))/2

   ! Locate in current column
   sym_ptr = sym_ptr + (irow-jcol+1)

end function sym_ptr

然后做你的工作:

   N = size(g2)
   allocate(sym_dist_mat(sym_size(N)))

   do j=1,size(g2)
        p2 = mesh%nodes(1:3,g2(j))-trans
        do i=j,size(g2)
            p1 = mesh%nodes(1:3,g1(i))
            sym_dist_mat(sym_ptr(N,i,j)) = norm2(p1-p2)  
        end do
   end do

minloc 函数应该看起来像这样(未经测试):


! minloc-style
pure function symmetric_minloc(N,matrix,dim) result(loc_min)
    integer, intent(in) :: N
    real(8), intent(in) :: matrix(N*(N+1)/2)
    integer, intent(in) :: dim

    real(8) :: dim_min(N),min_column
    integer :: loc_min(N)

    select case (dim)

       ! Row/column does not matter: it's symmetric!
       case (1,2)

          dim_min = huge(dim_row)
          loc_min = -1

          ptr = 0
          do j=1,N

             ! Diagonal element m(j,j)
             ptr=ptr+1
             min_column = matrix(ptr)
             if (min_column<=dim_min(j)) then
                loc_min(j) = j
                dim_min(j) = min_column
             end if

             ! Lower-diagonal part at column j
             do i=j+1,N
               ptr=ptr+1

               ! Applies to both this column,
               if (matrix(ptr)<=dim_min(j)) then
                  loc_min(j) = i
                  dim_min(j) = matrix(ptr)
               end if

               ! And the i-th column
               if (matrix(ptr)<=dim_min(i)) then
                  loc_min(i) = j
                  dim_min(i) = matrix(ptr)
               end if

            end do

          end do

       case default
          ! Invalid dimension
          loc_min = -1
    end select

end function symmetric_minloc