在 geom_bar 图中对齐最大和最小百分比变化

Align max & min percent changes in a geom_bar plot

我不确定这在 ggplot 中是否可行,但我已经修改了很长一段时间,但无法弄清楚。

我正在尝试创建一个模拟此布局的图:

我很确定我的数据格式正确。这是我到目前为止所做的:

library(tidyverse)
library(reshape2)
library(lubridate)

rental.data.melted <- melt(rental_data)

rental.data.melted <- rental.data.melted %>%
  slice(217:10908)

rental.data.melted <- rental.data.melted %>%
  rename(date = variable)

rental.data.melted$date <- lubridate::ym(rental.data.melted$date)

rental.one.year <- rental.data.melted %>%
  filter(year(date) >= 2021 & month(date) >= 3)

rental.one.year <- rental.one.year %>%
  group_by(RegionName) %>%
  mutate(prev_rent = lag(value),
         pct.chg = (value / prev_rent - 1) * 100)

one.year.results <- rental.one.year %>%
  filter(year(date) == 2022)

one.year.results <- one.year.results %>%
  filter(RegionName %in% c("Daytona Beach, FL", "Miami-Fort Lauderdale, FL", "Lakeland, FL", "New York, NY",
                           "North Port-Sarasota-Bradenton, FL", "Syracuse, NY", "Tulsa, OK", "McAllen, TX"))

生成的数据框如下所示:

> as.tibble(one.year.results)
# A tibble: 8 x 5
  RegionName                        date       value prev_rent pct.chg
  <chr>                             <date>     <dbl>     <dbl>   <dbl>
1 New York, NY                      2022-03-01  2934      2804   4.64 
2 Miami-Fort Lauderdale, FL         2022-03-01  2832      2699   4.93 
3 Tulsa, OK                         2022-03-01  1286      1294  -0.618
4 McAllen, TX                       2022-03-01  1017      1020  -0.294
5 North Port-Sarasota-Bradenton, FL 2022-03-01  2402      2488  -3.46 
6 Syracuse, NY                      2022-03-01  1318      1334  -1.20 
7 Lakeland, FL                      2022-03-01  1808      1725   4.81 
8 Daytona Beach, FL                 2022-03-01  1766      1680   5.12 

至于绘图,这是我目前正在使用的,但我无法弄清楚如何像上面的示例那样让条形图“对齐”,以便降幅最大的都市区(北港-佛罗里达州萨拉索塔)与增幅最大的地铁(佛罗里达州代托纳比奇)保持一致:

ggplot(data = one.year.results, aes(pct.chg)) +
  geom_bar(data = subset(one.year.results, pct.chg > 0),
           aes(y = RegionName), stat = "identity") +
  geom_bar(data = subset(one.year.results, pct.chg < 0),
           aes(y = RegionName), stat = "identity")

此外,这里是可重现形式的数据:

structure(list(RegionName = c("New York, NY", "Miami-Fort Lauderdale, FL", 
"Tulsa, OK", "McAllen, TX", "North Port-Sarasota-Bradenton, FL", 
"Syracuse, NY", "Lakeland, FL", "Daytona Beach, FL"), date = structure(c(19052, 
19052, 19052, 19052, 19052, 19052, 19052, 19052), class = "Date"), 
    value = c(2934, 2832, 1286, 1017, 2402, 1318, 1808, 1766), 
    prev_rent = c(2804, 2699, 1294, 1020, 2488, 1334, 1725, 1680
    ), pct.chg = c(4.63623395149786, 4.92775101889589, -0.618238021638329, 
    -0.294117647058822, -3.45659163987139, -1.19940029985007, 
    4.81159420289856, 5.11904761904762)), class = c("grouped_df", 
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L), groups = structure(list(
    RegionName = c("Daytona Beach, FL", "Lakeland, FL", "McAllen, TX", 
    "Miami-Fort Lauderdale, FL", "New York, NY", "North Port-Sarasota-Bradenton, FL", 
    "Syracuse, NY", "Tulsa, OK"), .rows = structure(list(8L, 
        7L, 4L, 2L, 1L, 5L, 6L, 3L), ptype = integer(0), class = c("vctrs_list_of", 
    "vctrs_vctr", "list"))), row.names = c(NA, -8L), class = c("tbl_df", 
"tbl", "data.frame"), .drop = TRUE))
library(tidyverse)

data <- structure(list(
  RegionName = c(
    "New York, NY", "Miami-Fort Lauderdale, FL",
    "Tulsa, OK", "McAllen, TX", "North Port-Sarasota-Bradenton, FL",
    "Syracuse, NY", "Lakeland, FL", "Daytona Beach, FL"
  ), date = structure(c(
    19052,
    19052, 19052, 19052, 19052, 19052, 19052, 19052
  ), class = "Date"),
  value = c(2934, 2832, 1286, 1017, 2402, 1318, 1808, 1766),
  prev_rent = c(2804, 2699, 1294, 1020, 2488, 1334, 1725, 1680), pct.chg = c(
    4.63623395149786, 4.92775101889589, -0.618238021638329,
    -0.294117647058822, -3.45659163987139, -1.19940029985007,
    4.81159420289856, 5.11904761904762
  )
), class = c(
  "grouped_df",
  "tbl_df", "tbl", "data.frame"
), row.names = c(NA, -8L), groups = structure(list(
  RegionName = c(
    "Daytona Beach, FL", "Lakeland, FL", "McAllen, TX",
    "Miami-Fort Lauderdale, FL", "New York, NY", "North Port-Sarasota-Bradenton, FL",
    "Syracuse, NY", "Tulsa, OK"
  ), .rows = structure(list(
    8L,
    7L, 4L, 2L, 1L, 5L, 6L, 3L
  ), ptype = integer(0), class = c(
    "vctrs_list_of",
    "vctrs_vctr", "list"
  ))
), row.names = c(NA, -8L), class = c(
  "tbl_df",
  "tbl", "data.frame"
), .drop = TRUE))

data %>%
  group_by(sign(pct.chg)) %>%
  arrange(-abs(pct.chg)) %>%
  slice(1:3) %>%
  mutate(position = row_number()) %>%
  ggplot(aes(position, pct.chg)) +
  geom_col() +
  geom_label(aes(label = RegionName)) +
  geom_hline(yintercept = 0) +
  coord_flip()

reprex package (v2.0.0)

于 2022-04-28 创建