在 geom_bar 图中对齐最大和最小百分比变化
Align max & min percent changes in a geom_bar plot
我不确定这在 ggplot
中是否可行,但我已经修改了很长一段时间,但无法弄清楚。
我正在尝试创建一个模拟此布局的图:
我很确定我的数据格式正确。这是我到目前为止所做的:
library(tidyverse)
library(reshape2)
library(lubridate)
rental.data.melted <- melt(rental_data)
rental.data.melted <- rental.data.melted %>%
slice(217:10908)
rental.data.melted <- rental.data.melted %>%
rename(date = variable)
rental.data.melted$date <- lubridate::ym(rental.data.melted$date)
rental.one.year <- rental.data.melted %>%
filter(year(date) >= 2021 & month(date) >= 3)
rental.one.year <- rental.one.year %>%
group_by(RegionName) %>%
mutate(prev_rent = lag(value),
pct.chg = (value / prev_rent - 1) * 100)
one.year.results <- rental.one.year %>%
filter(year(date) == 2022)
one.year.results <- one.year.results %>%
filter(RegionName %in% c("Daytona Beach, FL", "Miami-Fort Lauderdale, FL", "Lakeland, FL", "New York, NY",
"North Port-Sarasota-Bradenton, FL", "Syracuse, NY", "Tulsa, OK", "McAllen, TX"))
生成的数据框如下所示:
> as.tibble(one.year.results)
# A tibble: 8 x 5
RegionName date value prev_rent pct.chg
<chr> <date> <dbl> <dbl> <dbl>
1 New York, NY 2022-03-01 2934 2804 4.64
2 Miami-Fort Lauderdale, FL 2022-03-01 2832 2699 4.93
3 Tulsa, OK 2022-03-01 1286 1294 -0.618
4 McAllen, TX 2022-03-01 1017 1020 -0.294
5 North Port-Sarasota-Bradenton, FL 2022-03-01 2402 2488 -3.46
6 Syracuse, NY 2022-03-01 1318 1334 -1.20
7 Lakeland, FL 2022-03-01 1808 1725 4.81
8 Daytona Beach, FL 2022-03-01 1766 1680 5.12
至于绘图,这是我目前正在使用的,但我无法弄清楚如何像上面的示例那样让条形图“对齐”,以便降幅最大的都市区(北港-佛罗里达州萨拉索塔)与增幅最大的地铁(佛罗里达州代托纳比奇)保持一致:
ggplot(data = one.year.results, aes(pct.chg)) +
geom_bar(data = subset(one.year.results, pct.chg > 0),
aes(y = RegionName), stat = "identity") +
geom_bar(data = subset(one.year.results, pct.chg < 0),
aes(y = RegionName), stat = "identity")
此外,这里是可重现形式的数据:
structure(list(RegionName = c("New York, NY", "Miami-Fort Lauderdale, FL",
"Tulsa, OK", "McAllen, TX", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Lakeland, FL", "Daytona Beach, FL"), date = structure(c(19052,
19052, 19052, 19052, 19052, 19052, 19052, 19052), class = "Date"),
value = c(2934, 2832, 1286, 1017, 2402, 1318, 1808, 1766),
prev_rent = c(2804, 2699, 1294, 1020, 2488, 1334, 1725, 1680
), pct.chg = c(4.63623395149786, 4.92775101889589, -0.618238021638329,
-0.294117647058822, -3.45659163987139, -1.19940029985007,
4.81159420289856, 5.11904761904762)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L), groups = structure(list(
RegionName = c("Daytona Beach, FL", "Lakeland, FL", "McAllen, TX",
"Miami-Fort Lauderdale, FL", "New York, NY", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Tulsa, OK"), .rows = structure(list(8L,
7L, 4L, 2L, 1L, 5L, 6L, 3L), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), row.names = c(NA, -8L), class = c("tbl_df",
"tbl", "data.frame"), .drop = TRUE))
library(tidyverse)
data <- structure(list(
RegionName = c(
"New York, NY", "Miami-Fort Lauderdale, FL",
"Tulsa, OK", "McAllen, TX", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Lakeland, FL", "Daytona Beach, FL"
), date = structure(c(
19052,
19052, 19052, 19052, 19052, 19052, 19052, 19052
), class = "Date"),
value = c(2934, 2832, 1286, 1017, 2402, 1318, 1808, 1766),
prev_rent = c(2804, 2699, 1294, 1020, 2488, 1334, 1725, 1680), pct.chg = c(
4.63623395149786, 4.92775101889589, -0.618238021638329,
-0.294117647058822, -3.45659163987139, -1.19940029985007,
4.81159420289856, 5.11904761904762
)
), class = c(
"grouped_df",
"tbl_df", "tbl", "data.frame"
), row.names = c(NA, -8L), groups = structure(list(
RegionName = c(
"Daytona Beach, FL", "Lakeland, FL", "McAllen, TX",
"Miami-Fort Lauderdale, FL", "New York, NY", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Tulsa, OK"
), .rows = structure(list(
8L,
7L, 4L, 2L, 1L, 5L, 6L, 3L
), ptype = integer(0), class = c(
"vctrs_list_of",
"vctrs_vctr", "list"
))
), row.names = c(NA, -8L), class = c(
"tbl_df",
"tbl", "data.frame"
), .drop = TRUE))
data %>%
group_by(sign(pct.chg)) %>%
arrange(-abs(pct.chg)) %>%
slice(1:3) %>%
mutate(position = row_number()) %>%
ggplot(aes(position, pct.chg)) +
geom_col() +
geom_label(aes(label = RegionName)) +
geom_hline(yintercept = 0) +
coord_flip()
由 reprex package (v2.0.0)
于 2022-04-28 创建
我不确定这在 ggplot
中是否可行,但我已经修改了很长一段时间,但无法弄清楚。
我正在尝试创建一个模拟此布局的图:
我很确定我的数据格式正确。这是我到目前为止所做的:
library(tidyverse)
library(reshape2)
library(lubridate)
rental.data.melted <- melt(rental_data)
rental.data.melted <- rental.data.melted %>%
slice(217:10908)
rental.data.melted <- rental.data.melted %>%
rename(date = variable)
rental.data.melted$date <- lubridate::ym(rental.data.melted$date)
rental.one.year <- rental.data.melted %>%
filter(year(date) >= 2021 & month(date) >= 3)
rental.one.year <- rental.one.year %>%
group_by(RegionName) %>%
mutate(prev_rent = lag(value),
pct.chg = (value / prev_rent - 1) * 100)
one.year.results <- rental.one.year %>%
filter(year(date) == 2022)
one.year.results <- one.year.results %>%
filter(RegionName %in% c("Daytona Beach, FL", "Miami-Fort Lauderdale, FL", "Lakeland, FL", "New York, NY",
"North Port-Sarasota-Bradenton, FL", "Syracuse, NY", "Tulsa, OK", "McAllen, TX"))
生成的数据框如下所示:
> as.tibble(one.year.results)
# A tibble: 8 x 5
RegionName date value prev_rent pct.chg
<chr> <date> <dbl> <dbl> <dbl>
1 New York, NY 2022-03-01 2934 2804 4.64
2 Miami-Fort Lauderdale, FL 2022-03-01 2832 2699 4.93
3 Tulsa, OK 2022-03-01 1286 1294 -0.618
4 McAllen, TX 2022-03-01 1017 1020 -0.294
5 North Port-Sarasota-Bradenton, FL 2022-03-01 2402 2488 -3.46
6 Syracuse, NY 2022-03-01 1318 1334 -1.20
7 Lakeland, FL 2022-03-01 1808 1725 4.81
8 Daytona Beach, FL 2022-03-01 1766 1680 5.12
至于绘图,这是我目前正在使用的,但我无法弄清楚如何像上面的示例那样让条形图“对齐”,以便降幅最大的都市区(北港-佛罗里达州萨拉索塔)与增幅最大的地铁(佛罗里达州代托纳比奇)保持一致:
ggplot(data = one.year.results, aes(pct.chg)) +
geom_bar(data = subset(one.year.results, pct.chg > 0),
aes(y = RegionName), stat = "identity") +
geom_bar(data = subset(one.year.results, pct.chg < 0),
aes(y = RegionName), stat = "identity")
此外,这里是可重现形式的数据:
structure(list(RegionName = c("New York, NY", "Miami-Fort Lauderdale, FL",
"Tulsa, OK", "McAllen, TX", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Lakeland, FL", "Daytona Beach, FL"), date = structure(c(19052,
19052, 19052, 19052, 19052, 19052, 19052, 19052), class = "Date"),
value = c(2934, 2832, 1286, 1017, 2402, 1318, 1808, 1766),
prev_rent = c(2804, 2699, 1294, 1020, 2488, 1334, 1725, 1680
), pct.chg = c(4.63623395149786, 4.92775101889589, -0.618238021638329,
-0.294117647058822, -3.45659163987139, -1.19940029985007,
4.81159420289856, 5.11904761904762)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L), groups = structure(list(
RegionName = c("Daytona Beach, FL", "Lakeland, FL", "McAllen, TX",
"Miami-Fort Lauderdale, FL", "New York, NY", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Tulsa, OK"), .rows = structure(list(8L,
7L, 4L, 2L, 1L, 5L, 6L, 3L), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), row.names = c(NA, -8L), class = c("tbl_df",
"tbl", "data.frame"), .drop = TRUE))
library(tidyverse)
data <- structure(list(
RegionName = c(
"New York, NY", "Miami-Fort Lauderdale, FL",
"Tulsa, OK", "McAllen, TX", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Lakeland, FL", "Daytona Beach, FL"
), date = structure(c(
19052,
19052, 19052, 19052, 19052, 19052, 19052, 19052
), class = "Date"),
value = c(2934, 2832, 1286, 1017, 2402, 1318, 1808, 1766),
prev_rent = c(2804, 2699, 1294, 1020, 2488, 1334, 1725, 1680), pct.chg = c(
4.63623395149786, 4.92775101889589, -0.618238021638329,
-0.294117647058822, -3.45659163987139, -1.19940029985007,
4.81159420289856, 5.11904761904762
)
), class = c(
"grouped_df",
"tbl_df", "tbl", "data.frame"
), row.names = c(NA, -8L), groups = structure(list(
RegionName = c(
"Daytona Beach, FL", "Lakeland, FL", "McAllen, TX",
"Miami-Fort Lauderdale, FL", "New York, NY", "North Port-Sarasota-Bradenton, FL",
"Syracuse, NY", "Tulsa, OK"
), .rows = structure(list(
8L,
7L, 4L, 2L, 1L, 5L, 6L, 3L
), ptype = integer(0), class = c(
"vctrs_list_of",
"vctrs_vctr", "list"
))
), row.names = c(NA, -8L), class = c(
"tbl_df",
"tbl", "data.frame"
), .drop = TRUE))
data %>%
group_by(sign(pct.chg)) %>%
arrange(-abs(pct.chg)) %>%
slice(1:3) %>%
mutate(position = row_number()) %>%
ggplot(aes(position, pct.chg)) +
geom_col() +
geom_label(aes(label = RegionName)) +
geom_hline(yintercept = 0) +
coord_flip()
由 reprex package (v2.0.0)
于 2022-04-28 创建