Pyspark 在变量赋值中

Pypsark isin variable assignment

我有一个包含 50k 条记录 (dfa) 的 PySpark 数据框和另一个包含 40k 条记录 (dfb) 的数据框。在 dfa 中,我想创建一个新列,用 'present' else 'not_present'.

标记 dfb 中的 40k 条记录

我知道 pandas 有这方面的语法,但我找不到 PySpark 语法。

输入: dfa

col1 col2
xyz row
abc row
def row

df2

col1 col2
xyz row
abc row

预期输出:

df3

col1 col2 col3
xyz row present
abc row present
def row not_pre
df3 = df1.join(df2.select('col1', F.lit('present').alias('col3')).distinct(), 'col1', 'left')
df3 = df3.fillna('not_pre', 'col3')

完整示例:

from pyspark.sql import functions as F

df1 = spark.createDataFrame(
    [('xyz', 'row'),
     ('abc', 'row'),
     ('def', 'row')],
    ['col1', 'col2']
)
df2 = spark.createDataFrame(
    [('xyz', 'row'),
     ('abc', 'row')],
    ['col1', 'col2']
)

df3 = df1.join(df2.select('col1', F.lit('present').alias('col3')).distinct(), 'col1', 'left')
df3 = df3.fillna('not_pre', 'col3')

df3.show()
# +----+----+-------+
# |col1|col2|   col3|
# +----+----+-------+
# | xyz| row|present|
# | abc| row|present|
# | def| row|not_pre|
# +----+----+-------+

如果您想使用两列的组合进行检查,您也可以尝试这样做。

from pyspark.sql.functions import *
from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

simpleData = [("xyz","row"), \
    ("abc","row"), \
    ("def","row")
  ]
columns= ["col1","col2"]
df1 = spark.createDataFrame(data = simpleData, schema = columns)


simpleData2 = [("xyz","row"), \
    ("abc","row")
  ]
columns2= ["col1","col2"]
df2 = spark.createDataFrame(data = simpleData2, schema = columns2)

joined = (df1.alias("df1").join(df2.alias("df2"),(col("df1.col1") == col("df2.col1")) & (col("df1.col2") == col("df2.col2")),"left"))
df = joined.select(col("df1.*"),col("df2.col1").isNotNull().cast("integer").alias("flag")).withColumn("col3",when(col('flag')==1,lit("present")).otherwise("not_present")).drop('flag')
df.show()