如何使用 OpenCV python 对网格的轮廓进行排序?

How to sort contours of a grid using OpenCV python?

我正在尝试对棋盘网格内的以下方块进行排序。

我在 NumPy 数组中有有效的轮廓。

这是一段代码,说明了我如何获得有效的正方形轮廓。

  # Find contours and find squares with contour area filtering + shape approximation
            cnts = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            r = 0
            cnts = cnts[0] if len(cnts) == 2 else cnts[1]
            sort_contours(cnts, "bottom-to-top")
            sort_contours(cnts, "left-to-right")
            valid_cnts = []
            v = []
            areas = []
            for c in cnts:
                area = cv2.contourArea(c)
                peri = cv2.arcLength(c, True)
                approx = cv2.approxPolyDP(c, 0.02 * peri, True)
                if len(approx) == 4 and area > 150 and area < 15000:
                    areas.append(area)
                    x, y, w, h = cv2.boundingRect(c)
                    s = img[y:y + h, x:x + w]
                    imgStr = "squares/square" + str(r) + ".png"
                    v.insert(r, [x, y, w, h])
                    cv2.imwrite(imgStr, s)
                    cv2.drawContours(original, [c], -1, (36, 255, 12), 2)
                    cv2.drawContours(mask, [c], -1, (255, 255, 255), -1)
                    valid_cnts.insert(r, c)
                    r = r + 1

我的目标也是从左到右然后从下到上对它们进行排序。这样我就可以认出它们上的每一块。这是我当前的排序功能:

def sort_contours(cnts, method="left-to-right"):
    # initialize the reverse flag and sort index
    reverse = False
    i = 0
    # handle if we need to sort in reverse
    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True
    # handle if we are sorting against the y-coordinate rather than
    # the x-coordinate of the bounding box
    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    # construct the list of bounding boxes and sort them from top to
    # bottom
    boundingBoxes = [cv2.boundingRect(c) for c in cnts]
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                        key=lambda b: b[1][i], reverse=reverse))
    # return the list of sorted contours and bounding boxes
    return (cnts, boundingBoxes)

不幸的是,它不起作用,我认为这与相机角度有关。因为当我将照片裁剪为 64 个正方形时,它们不会按照我想要的顺序出现。如果有人能指导我如何正确准确地对它们进行排序,那就太好了!

想法是在阈值图像上找到轮廓后,我们利用 imutils.contours.sort_contours()bottom-to-top 中对轮廓进行排序。接下来我们取每行 8 个正方形,并从 left-to-right 开始对这一行进行排序。这是排序的可视化:

import cv2
from imutils import contours

# Load image, grayscale, gaussian blur, Otsu's threshold
image = cv2.imread("1.jpg")
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

# Find all contour and sort from top-to-bottom or bottom-to-top
cnts, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:]
(cnts, _) = contours.sort_contours(cnts, method="bottom-to-top")

# Take each row of 8 and sort from left-to-right
checkerboard_row = []
row = []
for (i, c) in enumerate(cnts, 1):
    row.append(c)
    if i % 8 == 0:  
        (cnts, _) = contours.sort_contours(row, method="left-to-right")
        checkerboard_row.append(cnts)
        row = []

# Draw text
number = 0
for row in checkerboard_row:
    for c in row:
        M = cv2.moments(c)
        x = int(M['m10']/M['m00'])
        y = int(M['m01']/M['m00'])
        cv2.putText(original, "{}".format(number + 1), (x - 20,y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,50,10), 2)
        number += 1

cv2.imshow('original', original)
cv2.waitKey()

注意:您还可以更改排序方向,例如right-to-lefttop-to-bottom