如何检查 R 在 GEE 分析(使用 geepack)中用作二分法结果的参考水平?

How do I check what R used as reference level for my dichotomous outcome in a GEE analysis (using geepack)?

我有 700 名患者的聚类患者数据(针对两家不同的医院分为两组)。我想弄清楚某个心血管风险因素 exposure(具有 3 个级别的因素:下降、稳定 [参考] 和上升)是否与我的二进制 outcome_pres(数字为 0 表示没有结果和 1 表示是结果),针对 agesex 进行了调整。为此,我在 R:

中使用了 geepack 包的 GEE 模型
library(tidyverse)
library(magrittr)
library(geepack)

data <- structure(list(id = c(23, 30, 92, 122, 132, 141, 157, 158, 167, 
175, 200, 230, 237, 257, 283, 297, 336, 339, 357, 376, 379, 421, 
425, 431, 436, 437, 443, 449, 458, 505, 518, 521, 546, 547, 573, 
613, 618, 644, 655, 672, 697, 730, 750, 755, 780, 786, 798, 853, 
862, 874, 882, 916, 945, 948, 979, 982, 1002, 1003, 1006, 1022, 
1059, 1069, 1092, 1095, 1116, 1127, 1133, 1162, 1178, 1188, 1201, 
1210, 1239, 1242, 1258, 1280, 1281, 1297, 1307, 1318, 1331, 1353, 
1369, 1383, 1407, 1463, 1473, 1477, 1485, 1519, 1555, 1567, 1573, 
1611, 1636, 1659, 1686, 1700, 1712, 1744, 1766, 1767, 1771, 1778, 
1797, 1806, 1810, 1821, 1822, 1875, 1879, 1890, 1903, 1917, 1964, 
2007, 2010, 2018, 2028, 2067, 2071, 2077, 2078, 2086, 2090, 2103, 
2128, 2148, 2185, 2223, 2239, 2257, 2267, 2283, 2300, 2304, 2332, 
2395, 2399, 2407, 2427, 2431, 2434, 2440, 2445, 2449, 2480, 2515, 
2533, 2536, 2546, 2552, 2635, 2660, 2697, 2705, 2724, 2725, 2728, 
2748, 2778, 2794, 2798, 2830, 2843, 2895, 2902, 2907, 2915, 2924, 
2929, 2952, 2955, 2963, 2982, 3016, 3018, 3036, 3065, 3083, 3087, 
3177, 3178, 3186, 3196, 3199, 3230, 3272, 3278, 3292, 3302, 3304, 
3311, 3312, 3351, 3378, 3399, 3401, 3403, 3445, 3447, 3449, 3457, 
3472, 3477, 3486, 3490, 3515, 3516, 3519, 3521, 17001, 64001, 
128001, 136001, 177001, 177002, 240001, 240001, 248002, 352001, 
370002, 410001, 426001, 443002, 443002, 466002, 466002, 469002, 
470001, 489002, 520002, 542001, 595001, 615001, 651001, 651002, 
657001, 658002, 665001, 665001, 687002, 698002, 745001, 754001, 
800002, 804001, 811002, 818001, 881001, 881001, 920001, 927001, 
927001, 943001, 974001, 1015002, 1037001, 1081001, 1081002, 1133001, 
1136001, 1141001, 1157001, 1175002, 1206001, 1247001, 1247002, 
1283001, 1290002, 1296001, 1307001, 1344002, 1346001, 1346001, 
1379001, 1419002, 1427001, 1438001, 1592002, 1652002, 1711001, 
1754001, 1763001, 1811001, 1833001, 1878002, 1892001, 1915001, 
1915002, 1921001, 1949002, 1961001, 1995001, 2014001, 2022002, 
2102001, 2102002, 2138002, 2141001, 2141002, 2193002, 2240001, 
2281001, 2281002, 2432001, 2493001, 2517001, 2558001, 2558002, 
2588001, 2588001, 2590001, 2601001, 2620002, 2653001, 2678001, 
2714001, 2721001, 2721002, 2721002, 2731001, 2777001, 2806001, 
2813001, 2862001, 2862002, 2872001, 2872002, 2902001, 2959001, 
2967001, 3026002, 3026002, 3037001, 3063002, 3094002, 3126002, 
3139001, 3196001, 3233001, 3252001, 3282002, 3290002, 3314001, 
3334001, 3334001, 3377002, 3420001, 3427001, 3458001, 3532002, 
3558001, 3653001, 3663002, 3675002, 3678002, 3692001, 3757002, 
3764002, 3764002, 3774001, 3780001, 3823002, 3823002, 3836001, 
3862001, 3916001, 3953001, 4032001, 4042001, 4063001, 4077001, 
4084001, 4094002, 4118002, 4140002, 4140002, 4149001, 4168004, 
4171001, 4241002, 4254001, 4257002, 4269001, 4270001, 4291001, 
4298001, 4302002, 4302002, 4325001, 4325001, 4343002, 4353001, 
4353001, 4377001, 4422002, 4447002, 4563002, 4568002, 4578001, 
4578002, 4601001, 4620002, 4641002, 4673002, 4687001, 4687002, 
4695002, 4695002, 4700002, 4707001, 4707001, 4768002, 4802001, 
4821001, 4833001, 4839001, 4839001, 4848001, 4854002, 4893002, 
4895002, 4918001, 4969001, 4972001, 4985001, 4985001, 4985002, 
4991001, 5045001, 5072002, 5181001, 5234002, 5240001, 5361001, 
5361002, 5388002, 5400001, 5467002, 5469001, 5528001, 5588001, 
5593001, 5643002, 5676001, 5683002, 5690001, 5708002, 5710002, 
5722002, 5722002, 5725002, 5770001, 5826001, 5866001, 5869001, 
5982002, 5993001, 6039002, 6054002, 6095001, 6095002, 6121003, 
6195002, 6258002, 6260002, 6391001, 6391002, 6414001, 6489002, 
6552002, 6555002, 6573001, 6578002, 6582002, 6583002, 6583002, 
6588001, 6588002, 6625001, 6625002, 6642001, 6660001, 6806002, 
6887002, 6888001, 6893002, 6916001, 6916001, 6953002, 6960001, 
6960001, 6991002, 7010001, 7010002, 7021001, 7037001, 7037001, 
7038001, 7038002, 7089001, 7121001, 7141001, 7150002, 7173002, 
7192001, 7220001, 7301002, 7318002, 7339002, 7344002, 7421001, 
7436002, 7522002, 7606002, 7653002, 7681001, 7686001, 7759002, 
7781001, 7805001, 7816001, 7837002, 7846001, 7856001, 7856002, 
7884002, 7934001, 7971002, 7984001, 7995001, 8016002, 8052001, 
8064002, 8064003, 8076001, 8109001, 8125001, 8143001, 8144001, 
8194001, 8194002, 8218001, 8247001, 8333001, 8360001, 8401001, 
8480001, 8545002, 8556001, 8556002, 8596002, 8599001, 8638001, 
8751002, 8943002, 9042001, 9075001, 9112002, 9195001, 9404001, 
9437001, 9452002, 9456001, 9528001, 9528002, 9535001, 9556001, 
9591001), group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 
1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 
2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 
2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 
1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 
2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L), .Label = c("1", "2", "3"), class = "factor"), age = c(61.6700889801506, 
63.3182751540041, 66.611909650924, 64.435318275154, 63.6796714579055, 
64.6351813826146, 60.6351813826146, 63.9780971937029, 70.4394250513347, 
63.7700205338809, 62.8583162217659, 64.5859000684463, 70.9733059548255, 
63.7125256673511, 63.8466803559206, 91.1813826146475, 86.0342231348392, 
75.9069130732375, 63.4496919917864, 63.8056125941136, 67.2388774811773, 
64.104038329911, 65.284052019165, 64.4188911704312, 82.2203969883641, 
65.0814510609172, 71.4277891854894, 62.2395619438741, 77.7385352498289, 
61.5030800821355, 82.3244353182751, 69.5687885010267, 78.0752908966461, 
65.3826146475017, 62.9267624914442, 63.6988364134155, 63.2553045859001, 
62.1409993155373, 64.6351813826146, 63.1512662559891, 66.3764544832307, 
71.5947980835044, 63.2826830937714, 65.9657768651608, 63.6194387405886, 
63.4414784394251, 61.5359342915811, 78.031485284052, 63.2772073921971, 
64.0219028062971, 79.1950718685832, 61.5468856947296, 65.0403832991102, 
59.0006844626968, 88.766598220397, 59.9151266255989, 61.8151950718686, 
63.4880219028063, 61.5058179329227, 69.5058179329227, 64.6297056810404, 
60.2327173169062, 64.7830253251198, 63.1129363449692, 82.3545516769336, 
71.7618069815195, 62.9733059548255, 67.5208761122519, 61.3388090349076, 
60.7063655030801, 67.3264887063655, 64.9801505817933, 62.9075975359343, 
63.3675564681725, 61.9986310746064, 64.2327173169062, 73.5468856947296, 
73.9219712525667, 61.9219712525667, 64.5722108145106, 61.2922655715264, 
72.4900752908966, 60.3778234086242, 60.8569472963723, 64.2135523613963, 
62.362765229295, 60.4298425735797, 64.1834360027378, 63.8412046543463, 
62.9240246406571, 61.5797399041752, 63.8357289527721, 63.1950718685832, 
66.8720054757016, 62.5242984257358, 73.5687885010267, 64.2245037645448, 
63.8576317590691, 63.8494182067077, 61.2621492128679, 73.927446954141, 
64.4490075290897, 61.741273100616, 62.6803559206023, 61.5112936344969, 
64.3011635865845, 61.2539356605065, 63.4962354551677, 72.2026009582478, 
61.4620123203285, 67.917864476386, 70.7871321013005, 66.2313483915127, 
61.9055441478439, 62.5653661875428, 79.7262149212868, 61.1143052703628, 
61.9192334017796, 63.0554414784394, 72.3586584531143, 63.4140999315537, 
61.9247091033539, 71.3620807665982, 65.1553730321697, 64.6461327857632, 
61.9000684462697, 63.5619438740589, 73.6317590691307, 61.5195071868583, 
62.9514031485284, 64.3066392881588, 61.3278576317591, 68.9418206707734, 
62.7652292950034, 83.7289527720739, 62.9295003422313, 61.596167008898, 
64.8925393566051, 68.6187542778919, 61.0102669404517, 67.2580424366872, 
63.2251882272416, 61.1416837782341, 63.5181382614647, 63.0444900752909, 
61.4236824093087, 75.6194387405886, 63.6878850102669, 63.937029431896, 
63.2936344969199, 63.8877481177276, 86.984257357974, 77.6673511293635, 
62.0752908966461, 75.668720054757, 63.5482546201232, 61.8617385352498, 
79.0581793292266, 81.3333333333333, 73.3415468856947, 63.8658453114305, 
64.7693360711841, 62.7843942505133, 81.0759753593429, 63.460643394935, 
61.3963039014374, 61.6262833675565, 84.4271047227926, 61.2073921971253, 
63.4661190965092, 62.8829568788501, 74.9787816563997, 64.662559890486, 
64.5338809034908, 62.1054072553046, 63.6878850102669, 66.4832306639288, 
64.6899383983573, 80.7529089664613, 61.7960301163587, 64.3832991101985, 
63.4442162902122, 63.9342915811088, 63.1978097193703, 72.662559890486, 
69.1225188227242, 63.2908966461328, 60.1943874058864, 61.3853524982888, 
61.1498973305955, 61.3689253935661, 61.1800136892539, 61.596167008898, 
60.7200547570157, 60.3148528405202, 60.6981519507187, 60.4681724845996, 
61.1581108829569, 60.662559890486, 61.0212183436003, 60.5776865160849, 
60.8323066392882, 61.0075290896646, 60.7775496235455, 61.1745379876797, 
59.9780971937029, 60.4626967830253, 60.6297056810404, 61.5852156057495, 
60.7830253251198, 61.7029431895962, 69.2375085557837, 71.4414784394251, 
67.4770704996578, 67.4305270362765, 61.0075290896646, 59.4743326488706, 
67.8275154004107, 72.9062286105407, 65.7604380561259, 57.7330595482546, 
63.7618069815195, 66.1300479123888, 69.242984257358, 71.8302532511978, 
76.7720739219713, 57.201916495551, 62.1629021218344, 67.2142368240931, 
59.4907597535934, 58.0752908966461, 75.8658453114305, 74.5927446954141, 
63.0006844626968, 67.9972621492129, 60.2135523613963, 59.7015742642026, 
65.1909650924025, 61.4565366187543, 60.2874743326489, 65.4401095140315, 
56.8131416837782, 72.5612594113621, 66.6201232032854, 66.0561259411362, 
68.4818617385352, 67.315537303217, 70.3600273785079, 68.3832991101985, 
57.9000684462697, 62.90212183436, 70.7405886379192, 72.7063655030801, 
77.5058179329227, 64.2217659137577, 57.2731006160164, 67.5509924709103, 
68.4407939767283, 60.3449691991786, 60.0246406570842, 62.6721423682409, 
60.9637234770705, 69.9931553730322, 69.6481861738535, 57.9438740588638, 
61.2046543463381, 58.154688569473, 58.0752908966461, 71.0992470910335, 
65.0212183436003, 56.6762491444216, 65.4592744695414, 65.7494866529774, 
68.0164271047228, 72.788501026694, 70.7077344284736, 63.5564681724846, 
66.7843942505133, 63.0444900752909, 65.845311430527, 69.07871321013, 
63.3976728268309, 59.1375770020534, 67.356605065024, 67.0937713894593, 
60.9719370294319, 74.90212183436, 66.0807665982204, 68.8514715947981, 
68.4462696783025, 66.2422997946612, 61.9247091033539, 58.3545516769336, 
65.0485968514716, 66.1081451060917, 68.870636550308, 64.1396303901437, 
58.1218343600274, 64.5420944558522, 67.1622176591376, 66.6283367556468, 
73.7467488021903, 64.4873374401095, 69.45106091718, 63.7289527720739, 
87.8439425051335, 66.984257357974, 61.6427104722793, 63.7453798767967, 
59.5592060232717, 58.8254620123203, 63.5482546201232, 73.7522245037646, 
57.6563997262149, 70.2642026009582, 66.6365503080082, 71.2388774811773, 
69.347022587269, 60.1642710472279, 59.9397672826831, 64.4462696783025, 
67.3620807665982, 65.3278576317591, 64.8213552361396, 69.6618754277892, 
69.5249828884326, 61.3607118412047, 68.5694729637235, 62.8172484599589, 
58.113620807666, 67.2854209445585, 68.3039014373717, 63.4579055441478, 
68.539356605065, 66.5735797399042, 64.5256673511294, 66.1902806297057, 
63.356605065024, 71.7316906228611, 67.3867214236824, 65.5715263518138, 
77.2156057494867, 72.2984257357974, 64.4407939767283, 74.0150581793292, 
73.2731006160164, 77.7166324435318, 61.3169062286105, 66.7898699520876, 
69.1772758384668, 71.3675564681725, 64.104038329911, 68.1286789869952, 
71.0362765229295, 60.643394934976, 68.6899383983573, 66.9924709103354, 
65.2785763175907, 58.3134839151266, 64.2956878850103, 69.2676249144422, 
70.4531143052704, 66.1218343600274, 60.7693360711841, 65.6399726214921, 
67.605749486653, 67.1567419575633, 67.6632443531827, 66.4832306639288, 
63.7590691307324, 65.6810403832991, 74.5653661875428, 65.7275838466804, 
67.3538672142368, 67.7700205338809, 65.1745379876797, 61.8370978781656, 
66.6036960985626, 59.0280629705681, 65.7987679671458, 61.0020533880903, 
59.8658453114305, 68.2847364818617, 67.2005475701574, 68.1697467488022, 
66.0862422997947, 61.9356605065024, 68.1314168377823, 65.0540725530459, 
69.45106091718, 70.2313483915127, 75.1594798083504, 81.1444216290212, 
60.4188911704312, 65.2457221081451, 67.8412046543463, 69.9082819986311, 
61.9438740588638, 88.2108145106092, 69.574264202601, 70.3737166324435, 
67.7344284736482, 66.2368240930869, 65.1225188227242, 61.7357973990418, 
81.6317590691307, 63.1567419575633, 61.8726899383984, 57.3223819301848, 
62.3463381245722, 70.1273100616016, 63.6358658453114, 69.4620123203285, 
70.113620807666, 67.7234770704997, 66.7515400410678, 72.8870636550308, 
69.2101300479124, 74.0068446269678, 72.7310061601643, 66.0041067761807, 
62.7707049965777, 63.5783709787817, 67.501711156742, 66.4339493497604, 
67.1375770020534, 64.5941136208077, 69.4674880219028, 66.466803559206, 
80.7501711156742, 62.2258726899384, 61.3141683778234, 66.4503764544832, 
66.1409993155373, 73.0458590006845, 67.7180013689254, 65.7166324435318, 
68.2518822724162, 70.2094455852156, 70.2532511978097, 65.347022587269, 
69.9986310746064, 68.5831622176591, 62.7843942505133, 63.006160164271, 
65.45106091718, 70.5845311430527, 88.9308692676249, 75.7399041752224, 
62.2231348391513, 56.7775496235455, 61.3935660506502, 69.0239561943874, 
65.3415468856947, 66.0232717316906, 71.7700205338809, 66.4120465434634, 
68.8788501026694, 60.6379192334018, 67.0225872689938, 63.5537303216975, 
64.1724845995893, 64.1670088980151, 67.8001368925394, 68.7200547570157, 
66.4996577686516, 62.9267624914442, 79.1403148528405, 71.6659822039699, 
62.3326488706366, 71.1019849418207, 62.3408624229979, 65.3579739904175, 
78.2067077344285, 63.0171115674196, 66.6365503080082, 63.8740588637919, 
68.6899383983573, 68.4188911704312, 66.0260095824778, 67.5482546201232, 
65.9329226557153, 59.9534565366188, 71.9452429842574, 68.4161533196441, 
70.6420260095825, 63.2991101984942, 71.6249144421629, 60.6789869952088, 
65.6810403832991, 65.347022587269, 62.4558521560575, 67.5318275154004, 
64.9281314168378, 67.129363449692, 67.3292265571526, 65.2375085557837, 
59.2881587953457, 64.1396303901437, 65.7713894592745, 65.7166324435318, 
60.4818617385353, 66.5215605749487, 72.8186173853525, 68.6789869952088, 
65.678302532512, 74.5790554414784, 64.1505817932923, 65.7166324435318, 
57.7494866529774, 62.0150581793292, 62.0752908966461, 74.135523613963, 
67.64681724846, 72.4900752908966, 65.8891170431211, 76.9308692676249, 
68.4709103353867, 66.3983572895277, 69.5605749486653, 66.6721423682409, 
65.0403832991102, 67.6386036960986, 67.5318275154004, 62.54893908282, 
78.0041067761807, 77.0184804928131, 66.4914442162902, 80.8049281314168, 
65.3251197809719, 75.2087611225188, 66.7241615331964, 56.6078028747433, 
65.7713894592745, 70.611909650924, 66.6721423682409, 72.227241615332, 
77.3114305270363, 82.2450376454483, 65.0294318959617, 63.315537303217, 
71.0499657768652, 62.4722792607803, 62.7186858316222, 63.5373032169747, 
69.4866529774127, 66.839151266256, 65.4647501711157, 66.8911704312115, 
78.403832991102, 65.8590006844627, 64.2765229295003, 79.9671457905544, 
85.07871321013, 66.7515400410678, 75.211498973306, 71.3620807665982, 
72.2628336755647, 64.9363449691992, 77.9493497604381, 58.5817932922656, 
70.2258726899384, 76.0191649555099, 68.4928131416838, 69.1143052703628, 
69.3388090349076, 71.7262149212868, 90.9650924024641, 67.7043121149897, 
77.9301848049281), sex = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 
1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 
1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 
1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 
2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 
1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 
2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 
1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 
2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 
1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 
2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 
2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 
2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 
2L, 2L, 2L, 1L), .Label = c("Women", "Men"), class = "factor"), 
    exposure = structure(c(1L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 1L, 
    1L, 1L, 2L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    3L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 2L, 
    1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 2L, 1L, 
    1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 
    3L, 3L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 
    1L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 1L, 
    1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 3L, 2L, 1L, 
    1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 3L, 1L, 1L, 2L, 1L, 
    1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 
    2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 2L, 3L, 1L, 
    2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 3L, 1L, 2L, 1L, 3L, 1L, 2L, 1L, 3L, 1L, 2L, 2L, 
    2L, 2L, 3L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
    2L, 3L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 3L, 2L, 
    1L, 2L, 1L, 2L, 2L, 1L, 3L, 2L, 1L, 3L, 3L, 1L, 1L, 3L, 1L, 
    2L, 1L, 2L, 2L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 3L, 1L, 
    2L, 2L, 3L, 2L, 1L, 3L, 1L, 2L, 1L, 3L, 3L, 2L, 1L, 1L, 3L, 
    2L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 2L, 2L, 
    3L, 1L, 2L, 1L, 1L, 1L, 3L, 3L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 
    2L, 3L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 2L, 1L, 2L, 1L, 1L, 
    2L, 2L, 3L, 2L, 1L, 3L, 1L, 2L, 3L, 2L, 1L, 3L, 3L, 1L, 3L, 
    1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 
    2L, 1L, 1L, 3L, 2L, 3L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 
    1L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 1L, 3L, 1L, 
    1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 1L, 1L, 3L, 1L, 1L, 
    1L, 3L, 1L, 1L, 3L, 2L, 1L, 1L, 2L, 3L, 1L, 2L, 2L, 1L, 3L, 
    2L, 1L, 3L, 2L, 2L, 2L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 2L, 
    1L, 1L, 2L, 3L, 2L, 2L, 2L, 2L, 3L, 2L, 1L, 3L, 2L, 2L, 1L, 
    1L, 1L, 1L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 
    1L, 2L, 2L, 2L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 3L, 1L, 
    1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 
    1L, 3L, 2L, 3L, 3L, 2L, 3L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 3L, 
    1L, 1L, 1L, 3L, 1L, 2L), .Label = c("Stable", "Fall", "Rise"
    ), class = "factor"), outcome_pres = c(1, 1, 1, 1, 1, 0, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 
    0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 
    0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 
    1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 
    1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 
    1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 
    1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 
    1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 
    1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
    1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 
    1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 
    0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 
    1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 
    1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 
    1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 
    1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 
    1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)), row.names = c(NA, 
-570L), class = c("tbl_df", "tbl", "data.frame"))

和模型

model <- geeglm(formula=outcome_pres~exposure+sex+age, data=data, id=id, family=binomial("logit"), corstr="ar1")

如何检查 R 是否实际使用 outcome_pres 的 0 作为此分析中的参考类别?

我认为你误解了什么。 outcome_pres 是您的结果,您将其定义为二项分布,并且具有值 0 和 1:

str(data)
tibble [570 x 6] (S3: tbl_df/tbl/data.frame)
 $ id          : num [1:570] 23 30 92 122 132 141 157 158 167 175 ...
 $ group       : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
 $ age         : num [1:570] 61.7 63.3 66.6 64.4 63.7 ...
 $ sex         : Factor w/ 2 levels "Women","Men": 1 1 1 1 1 2 1 2 1 1 ...
 $ exposure    : Factor w/ 3 levels "Stable","Fall",..: 1 1 1 3 1 3 1 1 1 1 ...
 $ outcome_pres: num [1:570] 1 1 1 1 1 0 1 1 1 1 ...

本案例中没有参考类别。

如果你的问题是我怎么知道我曝光的参考类别是什么,那么你可以直接在你模型的summary中看到:

summary(model)

Call:
geeglm(formula = outcome_pres ~ exposure + sex + age, family = binomial("logit"), 
    data = data, id = id, corstr = "ar1")

 Coefficients:
              Estimate   Std.err Wald Pr(>|W|)   
(Intercept)  -3.652686  1.826395 4.00   0.0455 * 
exposureFall  0.718930  0.444144 2.62   0.1055   
exposureRise -0.854571  0.325662 6.89   0.0087 **
sexMen        0.000538  0.242922 0.00   0.9982   
age           0.080847  0.028230 8.20   0.0042 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

您有 exposureFallexposureRise,这意味着您的参考是摘要中不存在的类别,即 stable:

data$exposure %>% unique()
[1] Stable Rise   Fall  
Levels: Stable Fall Rise
stable

相比,

Rise 具有保护作用(您的奇数比为 exp(-0.854571))