整洁的过滤方式,但将补码放入tibble
tidy way of filtering, but putting complement into tibble
假设我正在过滤一个 tibble,进行一些处理,过滤,然后进行更多处理,但我想保留在每一步过滤掉的数据的补充。
例如而不是
library(tidyverse)
data(mtcars)
mtcars %>%
filter(cyl<5) %>%
filter(gear>3 & wt>3) %>%
filter(mpg>23)
我可能想要这样的东西,而无需执行单独的步骤,即我存储小标题,再执行一个步骤来存储补码,然后再执行另一个步骤等。
library(tidyverse)
data(mtcars)
mtcars1 = mtcars %>%
filter(cyl<5, keep_complement="mtcars2") %>%
filter(gear>3 & wt>3, keep_complement="mtcars3") %>%
filter(mpg>23, keep_complement="mtcars4")
# Desired outcome: 4 tibbles mtcars1 to 4
mtcars_final = bind_rows(mtcars1, mtcars2, mtcars3, mtcars4)
如果你想知道我为什么要这个:我有一些越来越复杂的字符串操作来解决问题,首先是简单的直接比较,然后是一些 regex/fuzzy 字符串匹配,然后是我可能最终得到的东西使用神经网络。感觉应该有一些巧妙的方法可以只对一个子集执行昂贵的操作,而不必分那么多步骤编写代码。
即我试图避免的是看起来像这样的笨拙的东西(这也需要我自己反转任何过滤操作 - 实际上还必须考虑 NA 值等):
mtcars_tmp <- mtcars %>%
filter(cyl<5)
mtcars2 <- mtcars %>%
filter(cyl>=5)
mtcars_tmp2 <- mtcars_tmp %>%
filter(gear>3 & wt>3)
mtcars3 <- mtcars_tmp %>%
filter(gear<=3 | wt<=3)
mtcars1 <- mtcars_tmp2 %>%
filter(mpg>23)
mtcars4 <- mtcars_tmp2 %>%
filter(mpg<=23)
mtcars_final = bind_rows(mtcars1, mtcars2, mtcars3, mtcars4)
这将使用 anti_join
创建补码并将其分配给一个新对象和 returns 过滤后的结果,因此它可以像管道中的普通 dplyr::filter
一样使用:
library(tidyverse)
#' Filters a data.frame and saves the complement
#' @param keep_complement charachter to name the object the complement is saved to. NULL to not save it.
filter_complement <- function(.data, ..., keep_complement = NULL) {
res <- dplyr::filter(.data = .data, ...)
if(! is.null(keep_complement)) {
complement <- dplyr::anti_join(.data, res)
assign(keep_complement, complement, envir = globalenv())
}
res
}
mtcars %>%
filter(cyl < 5) %>%
filter(gear > 3 & wt > 3) %>%
filter(mpg > 23)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Merc 240D 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
mtcars %>%
filter_complement(cyl < 5, keep_complement = "mtcars2") %>%
filter_complement(gear > 3 & wt > 3, keep_complement = "mtcars3") %>%
filter_complement(mpg > 23, keep_complement = "mtcars4")
#> Joining, by = c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
#> "gear", "carb")
#> Joining, by = c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
#> "gear", "carb")
#> Joining, by = c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
#> "gear", "carb")
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Merc 240D 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
mtcars4
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2
mtcars3
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
由 reprex package (v2.0.0)
于 2022-05-06 创建
假设我正在过滤一个 tibble,进行一些处理,过滤,然后进行更多处理,但我想保留在每一步过滤掉的数据的补充。
例如而不是
library(tidyverse)
data(mtcars)
mtcars %>%
filter(cyl<5) %>%
filter(gear>3 & wt>3) %>%
filter(mpg>23)
我可能想要这样的东西,而无需执行单独的步骤,即我存储小标题,再执行一个步骤来存储补码,然后再执行另一个步骤等。
library(tidyverse)
data(mtcars)
mtcars1 = mtcars %>%
filter(cyl<5, keep_complement="mtcars2") %>%
filter(gear>3 & wt>3, keep_complement="mtcars3") %>%
filter(mpg>23, keep_complement="mtcars4")
# Desired outcome: 4 tibbles mtcars1 to 4
mtcars_final = bind_rows(mtcars1, mtcars2, mtcars3, mtcars4)
如果你想知道我为什么要这个:我有一些越来越复杂的字符串操作来解决问题,首先是简单的直接比较,然后是一些 regex/fuzzy 字符串匹配,然后是我可能最终得到的东西使用神经网络。感觉应该有一些巧妙的方法可以只对一个子集执行昂贵的操作,而不必分那么多步骤编写代码。
即我试图避免的是看起来像这样的笨拙的东西(这也需要我自己反转任何过滤操作 - 实际上还必须考虑 NA 值等):
mtcars_tmp <- mtcars %>%
filter(cyl<5)
mtcars2 <- mtcars %>%
filter(cyl>=5)
mtcars_tmp2 <- mtcars_tmp %>%
filter(gear>3 & wt>3)
mtcars3 <- mtcars_tmp %>%
filter(gear<=3 | wt<=3)
mtcars1 <- mtcars_tmp2 %>%
filter(mpg>23)
mtcars4 <- mtcars_tmp2 %>%
filter(mpg<=23)
mtcars_final = bind_rows(mtcars1, mtcars2, mtcars3, mtcars4)
这将使用 anti_join
创建补码并将其分配给一个新对象和 returns 过滤后的结果,因此它可以像管道中的普通 dplyr::filter
一样使用:
library(tidyverse)
#' Filters a data.frame and saves the complement
#' @param keep_complement charachter to name the object the complement is saved to. NULL to not save it.
filter_complement <- function(.data, ..., keep_complement = NULL) {
res <- dplyr::filter(.data = .data, ...)
if(! is.null(keep_complement)) {
complement <- dplyr::anti_join(.data, res)
assign(keep_complement, complement, envir = globalenv())
}
res
}
mtcars %>%
filter(cyl < 5) %>%
filter(gear > 3 & wt > 3) %>%
filter(mpg > 23)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Merc 240D 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
mtcars %>%
filter_complement(cyl < 5, keep_complement = "mtcars2") %>%
filter_complement(gear > 3 & wt > 3, keep_complement = "mtcars3") %>%
filter_complement(mpg > 23, keep_complement = "mtcars4")
#> Joining, by = c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
#> "gear", "carb")
#> Joining, by = c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
#> "gear", "carb")
#> Joining, by = c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
#> "gear", "carb")
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Merc 240D 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
mtcars4
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2
mtcars3
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
由 reprex package (v2.0.0)
于 2022-05-06 创建