Pytorch模型对象没有属性'predict' BERT

Pytorch model object has no attribute 'predict' BERT

我使用 pytorch 训练了一个 BertClassifier 模型。在创建我的 best.pt 之后,我想在生产中制作我的模型并使用它从样本开始进行预测和分类,所以我从检查点恢复它们。否则,在将其放入评估和冻结模型后,我使用 .predict 来处理我的样本,但我遇到了这个属性错误。在调用检查点之前,我还对其进行了初始化。我什么时候错了?感谢您的帮助!

def save_ckp(state, is_best, checkpoint_path, best_model_path):
    """
    function created to save checkpoint, the latest one and the best one. 
    This creates flexibility: either you are interested in the state of the latest checkpoint or the best checkpoint.
    state: checkpoint we want to save
    is_best: is this the best checkpoint; min validation loss
    checkpoint_path: path to save checkpoint
    best_model_path: path to save best model
    """
    f_path = checkpoint_path
    # save checkpoint data to the path given, checkpoint_path
    torch.save(state, f_path)
    # if it is a best model, min validation loss
    if is_best:
        best_fpath = best_model_path
        # copy that checkpoint file to best path given, best_model_path
        shutil.copyfile(f_path, best_fpath)

def load_ckp(checkpoint_fpath, model, optimizer):
    """
    checkpoint_path: path to save checkpoint
    model: model that we want to load checkpoint parameters into       
    optimizer: optimizer we defined in previous training
    """
    # load check point
    checkpoint = torch.load(checkpoint_fpath)
    # initialize state_dict from checkpoint to model
    model.load_state_dict(checkpoint['state_dict'])
    # initialize optimizer from checkpoint to optimizer
    optimizer.load_state_dict(checkpoint['optimizer'])
    # initialize valid_loss_min from checkpoint to valid_loss_min
    valid_loss_min = checkpoint['valid_loss_min']
    # return model, optimizer, epoch value, min validation loss 
    return model, optimizer, checkpoint['epoch'], valid_loss_min.item()

#Create the BertClassfier class
class BertClassifier(nn.Module):
    """Bert Model for Classification Tasks."""
    def __init__(self, freeze_bert=True):
        """
         @param    bert: a BertModel object
         @param    classifier: a torch.nn.Module classifier
         @param    freeze_bert (bool): Set `False` to fine-tune the BERT model
        """
        super(BertClassifier, self).__init__()
        
        .......
        
    def forward(self, input_ids, attention_mask):
        ''' Feed input to BERT and the classifier to compute logits.
         @param    input_ids (torch.Tensor): an input tensor with shape (batch_size,
                       max_length)
         @param    attention_mask (torch.Tensor): a tensor that hold attention mask
                       information with shape (batch_size, max_length)
         @return   logits (torch.Tensor): an output tensor with shape (batch_size,
                       num_labels) '''
         # Feed input to BERT
        outputs = self.bert(input_ids=input_ids,
                             attention_mask=attention_mask)
         
         # Extract the last hidden state of the token `[CLS]` for classification task
        last_hidden_state_cls = outputs[0][:, 0, :]
 
         # Feed input to classifier to compute logits
        logits = self.classifier(last_hidden_state_cls)
 
        return logits

def initialize_model(epochs):
    """ Initialize the Bert Classifier, the optimizer and the learning rate scheduler."""
    # Instantiate Bert Classifier
    bert_classifier = BertClassifier(freeze_bert=False)

    # Tell PyTorch to run the model on GPU
    bert_classifier = bert_classifier.to(device)

    # Create the optimizer
    optimizer = AdamW(bert_classifier.parameters(),
                      lr=lr,    # Default learning rate
                      eps=1e-8    # Default epsilon value
                      )

    # Total number of training steps
    total_steps = len(train_dataloader) * epochs

    # Set up the learning rate scheduler
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=0, # Default value
                                                num_training_steps=total_steps)
    return bert_classifier, optimizer, scheduler
    

def train(model, train_dataloader, val_dataloader, valid_loss_min_input, checkpoint_path, best_model_path, start_epochs, epochs, evaluation=True):

    """Train the BertClassifier model."""
    # Start training loop
    logging.info("--Start training...\n")

    # Initialize tracker for minimum validation loss
    valid_loss_min = valid_loss_min_input 


    for epoch_i in range(start_epochs, epochs):
        # =======================================
        #               Training
        # =======================================
        # Print the header of the result table
        logging.info((f"{'Epoch':^7} | {'Batch':^7} | {'Train Loss':^12} | {'Val Loss':^10} | {'Val Acc':^9} | {'Elapsed':^9}"))

        # Measure the elapsed time of each epoch
        t0_epoch, t0_batch = time.time(), time.time()

        # Reset tracking variables at the beginning of each epoch
        total_loss, batch_loss, batch_counts = 0, 0, 0

        # Put the model into the training mode
        model.train()

        # For each batch of training data...
        for step, batch in enumerate(train_dataloader):
            batch_counts +=1
            # Load batch to GPU
            b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)

            # Zero out any previously calculated gradients
            model.zero_grad()

            # Perform a forward pass. This will return logits.
            logits = model(b_input_ids, b_attn_mask)

            # Compute loss and accumulate the loss values
            loss = loss_fn(logits, b_labels)
            batch_loss += loss.item()
            total_loss += loss.item()

            # Perform a backward pass to calculate gradients
            loss.backward()

            # Clip the norm of the gradients to 1.0 to prevent "exploding gradients"
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

            # Update parameters and the learning rate
            optimizer.step()
            scheduler.step()

            # Print the loss values and time elapsed for every 20 batches
            if (step % 500 == 0 and step != 0) or (step == len(train_dataloader) - 1):
                # Calculate time elapsed for 20 batches
                time_elapsed = time.time() - t0_batch

                # Print training results
                logging.info(f"{epoch_i + 1:^7} | {step:^7} | {batch_loss / batch_counts:^12.6f} | {'-':^10} | {'-':^9} | {time_elapsed:^9.2f}")

                # Reset batch tracking variables
                batch_loss, batch_counts = 0, 0
                t0_batch = time.time()

        # Calculate the average loss over the entire training data
        avg_train_loss = total_loss / len(train_dataloader)

        logging.info("-"*70)
        # =======================================
        #               Evaluation
        # =======================================
        if evaluation == True:
            # After the completion of each training epoch, measure the model's performance
            # on our validation set.
            val_loss, val_accuracy = evaluate(model, val_dataloader)

            # Print performance over the entire training data
            time_elapsed = time.time() - t0_epoch
            
            logging.info(f"{epoch_i + 1:^7} | {'-':^7} | {avg_train_loss:^12.6f} | {val_loss:^10.6f} | {val_accuracy:^10.6f} | {time_elapsed:^9.2f}")

            logging.info("-"*70)
        logging.info("\n")


         # create checkpoint variable and add important data
        checkpoint = {
            'epoch': epoch_i + 1,
            'valid_loss_min': val_loss,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }
        
        # save checkpoint
        save_ckp(checkpoint, False, checkpoint_path, best_model_path)
        
        ## TODO: save the model if validation loss has decreased
        if val_loss <= valid_loss_min:
            print('Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...'.format(valid_loss_min,val_loss))
            # save checkpoint as best model
            save_ckp(checkpoint, True, checkpoint_path, best_model_path)
            valid_loss_min = val_loss
    
    logging.info("-----------------Training complete--------------------------")

def evaluate(model, val_dataloader):
    """After the completion of each training epoch, measure the model's performance on our validation set."""
    # Put the model into the evaluation mode. The dropout layers are disabled during the test time.
    model.eval()

    # Tracking variables
    val_accuracy = []
    val_loss = []

    # For each batch in our validation set...
    for batch in val_dataloader:
        # Load batch to GPU
        b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)

        # Compute logits
        with torch.no_grad():
            logits = model(b_input_ids, b_attn_mask)

        # Compute loss
        loss = loss_fn(logits, b_labels)
        val_loss.append(loss.item())

        # Get the predictions
        preds = torch.argmax(logits, dim=1).flatten()

        # Calculate the accuracy rate
        accuracy = (preds == b_labels).cpu().numpy().mean() * 100
        val_accuracy.append(accuracy)

    # Compute the average accuracy and loss over the validation set.
    val_loss = np.mean(val_loss)
    val_accuracy = np.mean(val_accuracy)

    return val_loss, val_accuracy

bert_classifier, optimizer, scheduler = initialize_model(epochs=n_epochs)
train(model = bert_classifier ......)



bert_classifier, optimizer, scheduler = initialize_model(epochs=n_epochs)
model, optimizer, start_epoch, valid_loss_min = load_ckp(r"./best_model/best_model.pt", bert_classifier, optimizer)

model.eval()
model.freeze()

sample = {
  "seq": "ABCDE",}

predictions = model.predict(sample)
AttributeError: 'BertClassifier' object has no attribute 'predict'

一般都是人家帮你写的预测功能。 如果没有,你需要处理底层的东西。 在这一行之后,您加载了经过训练的参数。 模型、优化器、start_epoch、valid_loss_min = load_ckp(r"./best_model/best_model.pt", bert_classifier, 优化器)

之后,您需要执行 model.forward(intput_seq,this_attention_mask_maybe_null)。 可以看到这里的forward方法是模型中的:def forward(self, input_ids, attention_mask).