使用 Python 抓取 .aspx 页面会产生 404
Scraping .aspx page with Python yields 404
我是 web-scraping 初学者,正在尝试抓取此网页:https://profiles.doe.mass.edu/statereport/ap.aspx
我希望能够在顶部设置一些设置(例如学区,2020-2021,计算机科学 A,女性),然后下载这些设置的结果数据。
这是我目前使用的代码:
import requests
from bs4 import BeautifulSoup
url = 'https://profiles.doe.mass.edu/statereport/ap.aspx'
with requests.Session() as s:
s.headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0"
r = s.get('https://profiles.doe.mass.edu/statereport/ap.aspx')
soup = BeautifulSoup(r.text,"lxml")
data = {i['name']:i.get('value','') for i in soup.select('input[name]')}
data["ctl00$ContentPlaceHolder1$ddReportType"]="DISTRICT",
data["ctl00$ContentPlaceHolder1$ddYear"]="2021",
data["ctl00$ContentPlaceHolder1$ddSubject"]="COMSCA",
data["ctl00$ContentPlaceHolder1$ddStudentGroup"]="F",
p = s.post(url,data=data)
当我打印 p.text
时,我得到一个标题为 '\t404 - Page Not Found\r\n'
和消息为
的页面
<h2>We are unable to locate information at: <br /><br '
'/>http://profiles.doe.mass.edu:80/statereport/ap.aspxp?ASP.NET_SessionId=bxfgao54wru50zl5tkmfml00</h2>\r\n'
这是 data
在我修改之前的样子:
{'__EVENTVALIDATION': '/wEdAFXz4796FFICjJ1Xc5ZOd9SwSHUlrrW+2y3gXxnnQf/b23Vhtt4oQyaVxTPpLLu5SKjKYgCipfSrKpW6jkHllWSEpW6/zTHqyc3IGH3Y0p/oA6xdsl0Dt4O8D2I0RxEvXEWFWVOnvCipZArmSoAj/6Nog6zUh+Jhjqd1LNep6GtJczTu236xw2xaJFSzyG+xo1ygDunu7BCYVmh+LuKcW56TG5L0jGOqySgRaEMolHMgR0Wo68k/uWImXPWE+YrUtgDXkgqzsktuw0QHVZv7mSDJ31NaBb64Fs9ARJ5Argo+FxJW/LIaGGeAYoDphL88oao07IP77wrmH6t1R4d88C8ImDHG9DY3sCDemvzhV+wJcnU4a5qVvRziPyzqDWnj3tqRclGoSw0VvVK9w+C3/577Gx5gqF21UsZuYzfP4emcqvJ7ckTiBk7CpZkjUjM6Z9XchlxNjWi1LkzyZ8QMP0MaNCP4CVYJfndopwFzJC7kI3W106YIA/xglzXrSdmq6/MDUCczeqIsmRQGyTOkQFH724RllsbZyHoPHYvoSAJilrMQf6BUERVN4ojysx3fz5qZhZE7DWaJAC882mXz4mEtcevFrLwuVPD7iB2v2mlWoK0S5Chw4WavlmHC+9BRhT36jtBzSPRROlXuc6P9YehFJOmpQXqlVil7C9OylT4Kz5tYzrX9JVWEpeWULgo9Evm+ipJZOKY2YnC41xTK/MbZFxsIxqwHA3IuS10Q5laFojoB+e+FDCqazV9MvcHllsPv2TK3N1oNHA8ODKnEABoLdRgumrTLDF8Lh+k+Y4EROoHhBaO3aMppAI52v3ajRcCFET22jbEm/5+P2TG2dhPhYgtZ8M/e/AoXht29ixVQ1ReO/6bhLIM+i48RTmcl76n1mNjfimB8r3irXQGYIEqCkXlUHZ/SNlRYyx3obJ6E/eljlPveWNidFHOaj+FznOh264qDkMm7fF78WBO2v0x+or1WGijWDdQtRy9WRKXchYxUchmBlYm15YbBfMrIB7+77NJV+M6uIVVnCyiDRGj+oPXcTYxqSUCLrOMQyzYKJeu8/hWD0gOdKeoYUdUUJq4idIk+bLYy76sI/N2aK+aXZo/JPQ+23gTHzIlyi4Io7O6kXaULPs8rfo8hpkH1qXyKb/rP2VJBNWgyp8jOMx9px+m4/e2Iecd86E4eN4Rk6OIiwqGp+dMdgntXu5ruRHb1awPlVmDw92dL1P0b0XxJW7EGfMzyssMDhs1VT6K6iMUTHbuXkNGaEG1dP1h4ktnCwGqDLVutU6UuzT6i4nfqnvFjGK9+7Ze8qWIl8SYyhmvzmgpLjdMuF9CYMQ2Aa79HXLKFACsSSm0dyiU1/ZGyII2Fvga9o+nVV1jZam3LkcAPaXEKwEyJXfN/DA7P4nFAaQ+QP+2bSgrcw+/dw+86OhPyG88qyJwqZODEXE1WB5zSOUywGb1/Xed7wq9WoRs6v8rAK5c/2iH7YLiJ4mUVDo+7WCKrzO5+Hsyah3frMKbheY1acRmSVUzRgCnTx7jvcLGR9Jbt6TredqZaWZBrDFcntdg7EHd7imK5PqjUld3iCVjdyO+yLKUkMKiFD85G3vEferg/Q/TtfVBqeTU0ohP9d+CsKOmV/dxVYWEtBcfa9KiN6j4N8pP7+3iUOhajojZ8jV98kxT0zPZlzkpqI4SwR6Ys8d2RjIi5K+oQul4pL5u+zZvX0lsLP9Jl7FeVTfBvST67T6ohz8dl9gBfmmbwnT23SyuFSUGd6ZGaKE+9kKYmuImW7w3ePs7C70yDWHpIpxP/IJ4GHb36LWto2g3Ld3goCQ4fXPu7C4iTiN6b5WUSlJJsWGF4eQkJue8=',
'__VIEWSTATE': '/wEPDwUKLTM0NzY4OTQ4NmRkDwwPzTpuna+yxVhQxpRF4n2+zYKQtotwRPqzuCkRvyU=',
'__VIEWSTATEGENERATOR': '2B6F8D71',
'ctl00$ContentPlaceHolder1$btnViewReport': 'View Report',
'ctl00$ContentPlaceHolder1$hfExport': 'ViewReport',
'leftNavId': '11241',
'quickSearchValue': '',
'runQuickSearch': 'Y',
'searchType': 'QUICK',
'searchtext': ''}
根据类似问题的建议,我尝试使用参数,以各种方式编辑 data
(以模拟导航时在浏览器中看到的 POST 请求我自己的网站),并指定了 ASP.NET_SessionId
,但无济于事。
如何从该网站访问信息?
这应该是你要找的我所做的是使用 bs4 解析 HTML 数据然后找到 table。然后我得到这些行,为了更容易处理我把它放入字典中的数据。
import requests
from bs4 import BeautifulSoup
url = 'https://profiles.doe.mass.edu/statereport/ap.aspx'
with requests.Session() as s:
s.headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0"
r = s.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
table = soup.find_all('table')
rows = table[0].find_all('tr')
data = {}
for row in rows:
if row.find_all('th'):
keys = row.find_all('th')
for key in keys:
data[key.text] = []
else:
values = row.find_all('td')
for value in values:
data[keys[values.index(value)].text].append(value.text)
for key in data:
print(key, data[key][:10])
print('\n')
输出:
District Name ['Abington', 'Academy Of the Pacific Rim Charter Public (District)', 'Acton-Boxborough', 'Advanced Math and Science Academy Charter (District)', 'Agawam', 'Amesbury', 'Amherst-Pelham', 'Andover', 'Arlington', 'Ashburnham-Westminster']
District Code ['00010000', '04120000', '06000000', '04300000', '00050000', '00070000', '06050000', '00090000', '00100000', '06100000']
Tests Taken [' 100', ' 109', ' 1,070', ' 504', ' 209', ' 126', ' 178', ' 986', ' 893', ' 97']
Score=1 [' 16', ' 81', ' 12', ' 29', ' 27', ' 18', ' 5', ' 70', ' 72', ' 4']
Score=2 [' 31', ' 20', ' 55', ' 74', ' 65', ' 34', ' 22', ' 182', ' 149', ' 23']
Score=3 [' 37', ' 4', ' 158', ' 142', ' 55', ' 46', ' 37', ' 272', ' 242', ' 32']
Score=4 [' 15', ' 3', ' 344', ' 127', ' 39', ' 19', ' 65', ' 289', ' 270', ' 22']
Score=5 [' 1', ' 1', ' 501', ' 132', ' 23', ' 9', ' 49', ' 173', ' 160', ' 16']
% Score 1-2 [' 47.0', ' 92.7', ' 6.3', ' 20.4', ' 44.0', ' 41.3', ' 15.2', ' 25.6', ' 24.7', ' 27.8']
% Score 3-5 [' 53.0', ' 7.3', ' 93.7', ' 79.6', ' 56.0', ' 58.7', ' 84.8', ' 74.4', ' 75.3', ' 72.2']
Process finished with exit code 0
我能够通过修改 here 中的代码来实现此功能。我不确定为什么 以这种方式编辑有效载荷会有所作为,所以我将不胜感激任何见解!
这是我的工作代码,使用 Pandas 解析表格:
import requests
from bs4 import BeautifulSoup
import pandas as pd
url = 'https://profiles.doe.mass.edu/statereport/ap.aspx'
with requests.Session() as s:
s.headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0"
response = s.get(url)
soup = BeautifulSoup(response.content, 'html5lib')
data = { tag['name']: tag['value']
for tag in soup.select('input[name^=ctl00]') if tag.get('value')
}
state = { tag['name']: tag['value']
for tag in soup.select('input[name^=__]')
}
payload = data.copy()
payload.update(state)
payload["ctl00$ContentPlaceHolder1$ddReportType"]="DISTRICT",
payload["ctl00$ContentPlaceHolder1$ddYear"]="2021",
payload["ctl00$ContentPlaceHolder1$ddSubject"]="COMSCA",
payload["ctl00$ContentPlaceHolder1$ddStudentGroup"]="F",
p = s.post(url,data=payload)
df = pd.read_html(p.text)[0]
df["District Code"] = df["District Code"].astype(str).str.zfill(8)
display(df)
我是 web-scraping 初学者,正在尝试抓取此网页:https://profiles.doe.mass.edu/statereport/ap.aspx
我希望能够在顶部设置一些设置(例如学区,2020-2021,计算机科学 A,女性),然后下载这些设置的结果数据。
这是我目前使用的代码:
import requests
from bs4 import BeautifulSoup
url = 'https://profiles.doe.mass.edu/statereport/ap.aspx'
with requests.Session() as s:
s.headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0"
r = s.get('https://profiles.doe.mass.edu/statereport/ap.aspx')
soup = BeautifulSoup(r.text,"lxml")
data = {i['name']:i.get('value','') for i in soup.select('input[name]')}
data["ctl00$ContentPlaceHolder1$ddReportType"]="DISTRICT",
data["ctl00$ContentPlaceHolder1$ddYear"]="2021",
data["ctl00$ContentPlaceHolder1$ddSubject"]="COMSCA",
data["ctl00$ContentPlaceHolder1$ddStudentGroup"]="F",
p = s.post(url,data=data)
当我打印 p.text
时,我得到一个标题为 '\t404 - Page Not Found\r\n'
和消息为
<h2>We are unable to locate information at: <br /><br '
'/>http://profiles.doe.mass.edu:80/statereport/ap.aspxp?ASP.NET_SessionId=bxfgao54wru50zl5tkmfml00</h2>\r\n'
这是 data
在我修改之前的样子:
{'__EVENTVALIDATION': '/wEdAFXz4796FFICjJ1Xc5ZOd9SwSHUlrrW+2y3gXxnnQf/b23Vhtt4oQyaVxTPpLLu5SKjKYgCipfSrKpW6jkHllWSEpW6/zTHqyc3IGH3Y0p/oA6xdsl0Dt4O8D2I0RxEvXEWFWVOnvCipZArmSoAj/6Nog6zUh+Jhjqd1LNep6GtJczTu236xw2xaJFSzyG+xo1ygDunu7BCYVmh+LuKcW56TG5L0jGOqySgRaEMolHMgR0Wo68k/uWImXPWE+YrUtgDXkgqzsktuw0QHVZv7mSDJ31NaBb64Fs9ARJ5Argo+FxJW/LIaGGeAYoDphL88oao07IP77wrmH6t1R4d88C8ImDHG9DY3sCDemvzhV+wJcnU4a5qVvRziPyzqDWnj3tqRclGoSw0VvVK9w+C3/577Gx5gqF21UsZuYzfP4emcqvJ7ckTiBk7CpZkjUjM6Z9XchlxNjWi1LkzyZ8QMP0MaNCP4CVYJfndopwFzJC7kI3W106YIA/xglzXrSdmq6/MDUCczeqIsmRQGyTOkQFH724RllsbZyHoPHYvoSAJilrMQf6BUERVN4ojysx3fz5qZhZE7DWaJAC882mXz4mEtcevFrLwuVPD7iB2v2mlWoK0S5Chw4WavlmHC+9BRhT36jtBzSPRROlXuc6P9YehFJOmpQXqlVil7C9OylT4Kz5tYzrX9JVWEpeWULgo9Evm+ipJZOKY2YnC41xTK/MbZFxsIxqwHA3IuS10Q5laFojoB+e+FDCqazV9MvcHllsPv2TK3N1oNHA8ODKnEABoLdRgumrTLDF8Lh+k+Y4EROoHhBaO3aMppAI52v3ajRcCFET22jbEm/5+P2TG2dhPhYgtZ8M/e/AoXht29ixVQ1ReO/6bhLIM+i48RTmcl76n1mNjfimB8r3irXQGYIEqCkXlUHZ/SNlRYyx3obJ6E/eljlPveWNidFHOaj+FznOh264qDkMm7fF78WBO2v0x+or1WGijWDdQtRy9WRKXchYxUchmBlYm15YbBfMrIB7+77NJV+M6uIVVnCyiDRGj+oPXcTYxqSUCLrOMQyzYKJeu8/hWD0gOdKeoYUdUUJq4idIk+bLYy76sI/N2aK+aXZo/JPQ+23gTHzIlyi4Io7O6kXaULPs8rfo8hpkH1qXyKb/rP2VJBNWgyp8jOMx9px+m4/e2Iecd86E4eN4Rk6OIiwqGp+dMdgntXu5ruRHb1awPlVmDw92dL1P0b0XxJW7EGfMzyssMDhs1VT6K6iMUTHbuXkNGaEG1dP1h4ktnCwGqDLVutU6UuzT6i4nfqnvFjGK9+7Ze8qWIl8SYyhmvzmgpLjdMuF9CYMQ2Aa79HXLKFACsSSm0dyiU1/ZGyII2Fvga9o+nVV1jZam3LkcAPaXEKwEyJXfN/DA7P4nFAaQ+QP+2bSgrcw+/dw+86OhPyG88qyJwqZODEXE1WB5zSOUywGb1/Xed7wq9WoRs6v8rAK5c/2iH7YLiJ4mUVDo+7WCKrzO5+Hsyah3frMKbheY1acRmSVUzRgCnTx7jvcLGR9Jbt6TredqZaWZBrDFcntdg7EHd7imK5PqjUld3iCVjdyO+yLKUkMKiFD85G3vEferg/Q/TtfVBqeTU0ohP9d+CsKOmV/dxVYWEtBcfa9KiN6j4N8pP7+3iUOhajojZ8jV98kxT0zPZlzkpqI4SwR6Ys8d2RjIi5K+oQul4pL5u+zZvX0lsLP9Jl7FeVTfBvST67T6ohz8dl9gBfmmbwnT23SyuFSUGd6ZGaKE+9kKYmuImW7w3ePs7C70yDWHpIpxP/IJ4GHb36LWto2g3Ld3goCQ4fXPu7C4iTiN6b5WUSlJJsWGF4eQkJue8=',
'__VIEWSTATE': '/wEPDwUKLTM0NzY4OTQ4NmRkDwwPzTpuna+yxVhQxpRF4n2+zYKQtotwRPqzuCkRvyU=',
'__VIEWSTATEGENERATOR': '2B6F8D71',
'ctl00$ContentPlaceHolder1$btnViewReport': 'View Report',
'ctl00$ContentPlaceHolder1$hfExport': 'ViewReport',
'leftNavId': '11241',
'quickSearchValue': '',
'runQuickSearch': 'Y',
'searchType': 'QUICK',
'searchtext': ''}
根据类似问题的建议,我尝试使用参数,以各种方式编辑 data
(以模拟导航时在浏览器中看到的 POST 请求我自己的网站),并指定了 ASP.NET_SessionId
,但无济于事。
如何从该网站访问信息?
这应该是你要找的我所做的是使用 bs4 解析 HTML 数据然后找到 table。然后我得到这些行,为了更容易处理我把它放入字典中的数据。
import requests
from bs4 import BeautifulSoup
url = 'https://profiles.doe.mass.edu/statereport/ap.aspx'
with requests.Session() as s:
s.headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0"
r = s.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
table = soup.find_all('table')
rows = table[0].find_all('tr')
data = {}
for row in rows:
if row.find_all('th'):
keys = row.find_all('th')
for key in keys:
data[key.text] = []
else:
values = row.find_all('td')
for value in values:
data[keys[values.index(value)].text].append(value.text)
for key in data:
print(key, data[key][:10])
print('\n')
输出:
District Name ['Abington', 'Academy Of the Pacific Rim Charter Public (District)', 'Acton-Boxborough', 'Advanced Math and Science Academy Charter (District)', 'Agawam', 'Amesbury', 'Amherst-Pelham', 'Andover', 'Arlington', 'Ashburnham-Westminster']
District Code ['00010000', '04120000', '06000000', '04300000', '00050000', '00070000', '06050000', '00090000', '00100000', '06100000']
Tests Taken [' 100', ' 109', ' 1,070', ' 504', ' 209', ' 126', ' 178', ' 986', ' 893', ' 97']
Score=1 [' 16', ' 81', ' 12', ' 29', ' 27', ' 18', ' 5', ' 70', ' 72', ' 4']
Score=2 [' 31', ' 20', ' 55', ' 74', ' 65', ' 34', ' 22', ' 182', ' 149', ' 23']
Score=3 [' 37', ' 4', ' 158', ' 142', ' 55', ' 46', ' 37', ' 272', ' 242', ' 32']
Score=4 [' 15', ' 3', ' 344', ' 127', ' 39', ' 19', ' 65', ' 289', ' 270', ' 22']
Score=5 [' 1', ' 1', ' 501', ' 132', ' 23', ' 9', ' 49', ' 173', ' 160', ' 16']
% Score 1-2 [' 47.0', ' 92.7', ' 6.3', ' 20.4', ' 44.0', ' 41.3', ' 15.2', ' 25.6', ' 24.7', ' 27.8']
% Score 3-5 [' 53.0', ' 7.3', ' 93.7', ' 79.6', ' 56.0', ' 58.7', ' 84.8', ' 74.4', ' 75.3', ' 72.2']
Process finished with exit code 0
我能够通过修改 here 中的代码来实现此功能。我不确定为什么 以这种方式编辑有效载荷会有所作为,所以我将不胜感激任何见解!
这是我的工作代码,使用 Pandas 解析表格:
import requests
from bs4 import BeautifulSoup
import pandas as pd
url = 'https://profiles.doe.mass.edu/statereport/ap.aspx'
with requests.Session() as s:
s.headers['User-Agent'] = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0"
response = s.get(url)
soup = BeautifulSoup(response.content, 'html5lib')
data = { tag['name']: tag['value']
for tag in soup.select('input[name^=ctl00]') if tag.get('value')
}
state = { tag['name']: tag['value']
for tag in soup.select('input[name^=__]')
}
payload = data.copy()
payload.update(state)
payload["ctl00$ContentPlaceHolder1$ddReportType"]="DISTRICT",
payload["ctl00$ContentPlaceHolder1$ddYear"]="2021",
payload["ctl00$ContentPlaceHolder1$ddSubject"]="COMSCA",
payload["ctl00$ContentPlaceHolder1$ddStudentGroup"]="F",
p = s.post(url,data=payload)
df = pd.read_html(p.text)[0]
df["District Code"] = df["District Code"].astype(str).str.zfill(8)
display(df)