pyomo 中的逻辑或强制连续赋值
Logical OR in pyomo to force consecutive assignment
我想优化我的模型,找到项目 (probes
) 与序列 (sequence
) 的最大可能重叠 (assignment
)。我有所有项目的开始和结束位置,因此可以按如下方式构建我的模型:
import pyomo
import pyomo.environ as pe
import pyomo.opt as po
sequence = [0, 1, 2, 3, 4, 5]
probes = ["a", "b", "c"]
probe_starts = {"a": 0, "b": 2, "c": 3}
probe_ends = {"a": 2, "b": 4, "c": 5}
# Model definition
model = pe.ConcreteModel()
model.sequence = pe.Set(initialize=sequence)
model.probes = pe.Set(initialize=probes)
model.starts = pe.Param(model.probes, initialize=probe_starts)
model.ends = pe.Param(model.probes, initialize=probe_ends)
model.assignment = pe.Var(model.sequence, model.probes, domain=pe.Binary)
# Objective
expr = sum([model.assignment[j, i] for j in model.sequence for i in model.probes])
model.objective = pe.Objective(expr=expr, sense=pe.maximize)
我现在有以下三个约束:
- 项目一次只能绑定一个(没有重叠的项目)
- 因为项目有开始和结束位置,所以它们只能在各自的开始和结束后分配
- 如果项目被分配,它们必须从开始到结束全部绑定
# One probe per sequence position
model.one_probe_bound = pe.ConstraintList()
for s in model.sequence:
model.one_probe_bound.add(sum(model.assignment[s, p] for p in model.probes) <= 1)
# No assignment before/after start/end
model.define_length = pe.ConstraintList()
for s in model.sequence:
for p in model.probes:
if s < model.starts[p]:
model.define_length.add(model.assignment[s, p] == 0)
if s > model.ends[p]:
model.define_length.add(model.assignment[s, p] == 0)
上面的两个约束都没有问题,但我找不到从我的第三个条件输入逻辑或的方法。我尝试使用 :
中描述的析取
# Only allow full assignment or none
def disjunct_rule(b, p, i):
m = b.model()
expr = sum(m.assignment[s, p] for s in m.sequence)
if i:
return expr == m.ends[p] - m.starts[p]
else:
return expr == 0
def disjunction_rule(m, p):
return [m.disjunct[p, i] for i in [True, False]]
def xfrm(m):
pe.TransformationFactory("gdp.bigm").apply_to(m)
model.disjunct = pyomo.gdp.Disjunct(model.probes, [True, False], rule=disjunct_rule)
model.disjunction = pyomo.gdp.Disjunction(model.probes, rule=disjunction_rule)
model.xfrm = pe.BuildAction(rule=xfrm)
查看 model.assignment
的矩阵表示,其中 sequence
沿列,probes
沿行,我得到以下内容:
array([[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 1]])
如上所示,我得到的分配没有跨越项目的整个长度(例如,c / 3rd 项目只分配在最后一个位置,而它也应该绑定在前两个位置. 我可以在这个玩具示例中看到的唯一有效解决方案如下:
array([[1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1]])
其中项目 a 和 c 被全部选中,而 b 根本没有被选中。这样我们就匹配了所有约束。我使用的求解器是 glpk
。在此先感谢您的任何建议。
这是一个剪辑....
我提到的另一种方法是为序列中的每个点引入另一个二进制变量,并通过分配探针(以某种方式)控制它。下面的方法应该比那个更有效。
尝试使用更大的数据集...当前只有 1 个可行的解决方案。另外,我 假设 更好的解决方案会使用更少的探针,所以我 re-wrote objective
此解决方案的基础是您必须连接到起点(约束 1)一次和终点(约束 2)一次的约束。并且任何中间连接必须一致(约束3)。
我在一些需要的地方使用了一些 sub-setting。
代码:
# model to make contiguous connections across a sequence
# using as few connections (probes) as possible
import pyomo
import pyomo.environ as pe
sequence = [0, 1, 2, 3, 4, 5]
probes = ["a", "b", "c"]
probe_starts = {"a": 0, "b": 2, "c": 3}
probe_ends = {"a": 2, "b": 4, "c": 5}
# Model definition
model = pe.ConcreteModel()
model.sequence = pe.Set(initialize=sequence)
model.probes = pe.Set(initialize=probes)
model.starts = pe.Param(model.probes, initialize=probe_starts)
model.ends = pe.Param(model.probes, initialize=probe_ends)
model.assign = pe.Var(model.probes, domain=pe.Binary) # 1 if probe p is used...
# Objective
obj = sum(model.assign[p] for p in model.probes) # use as few as possible...?
model.objective = pe.Objective(expr=obj, sense=pe.minimize)
# Constraints
# must connect start once
model.C1 = pe.Constraint(expr=sum(model.assign[p] for p in model.probes
if model.starts[p] == sequence[0]) == 1)
# must connect end once
model.C2 = pe.Constraint(expr=sum(model.assign[p] for p in model.probes
if model.ends[p] == sequence[-1]) == 1)
# must connect any intermediate connections...
# if probe p1 is selected, must select an eligible p2 follow on
def connect(model, p1):
# create subset on the fly of legal follow-on connections
# assumption here that sequence is a sequential list of ints by using the "+1"
p2s = [p for p in model.probes if model.starts[p] == model.ends[p1] + 1]
if not p2s:
return pe.Constraint.Skip
return sum(model.assign[p2] for p2 in p2s) == model.assign[p1]
non_completing_probes = [p for p in model.probes if model.ends[p] != sequence[-1]]
model.C3 = pe.Constraint(non_completing_probes, rule=connect)
solver = pe.SolverFactory('glpk')
result = solver.solve(model)
print(result)
model.display()
产量:
Problem:
- Name: unknown
Lower bound: 2.0
Upper bound: 2.0
Number of objectives: 1
Number of constraints: 4
Number of variables: 4
Number of nonzeros: 5
Sense: minimize
Solver:
- Status: ok
Termination condition: optimal
Statistics:
Branch and bound:
Number of bounded subproblems: 0
Number of created subproblems: 0
Error rc: 0
Time: 0.006771087646484375
Solution:
- number of solutions: 0
number of solutions displayed: 0
Model unknown
Variables:
assign : Size=3, Index=probes
Key : Lower : Value : Upper : Fixed : Stale : Domain
a : 0 : 1.0 : 1 : False : False : Binary
b : 0 : 0.0 : 1 : False : False : Binary
c : 0 : 1.0 : 1 : False : False : Binary
Objectives:
objective : Size=1, Index=None, Active=True
Key : Active : Value
None : True : 2.0
Constraints:
C1 : Size=1
Key : Lower : Body : Upper
None : 1.0 : 1.0 : 1.0
C2 : Size=1
Key : Lower : Body : Upper
None : 1.0 : 1.0 : 1.0
C3 : Size=1
Key : Lower : Body : Upper
a : 0.0 : 0.0 : 0.0
我想优化我的模型,找到项目 (probes
) 与序列 (sequence
) 的最大可能重叠 (assignment
)。我有所有项目的开始和结束位置,因此可以按如下方式构建我的模型:
import pyomo
import pyomo.environ as pe
import pyomo.opt as po
sequence = [0, 1, 2, 3, 4, 5]
probes = ["a", "b", "c"]
probe_starts = {"a": 0, "b": 2, "c": 3}
probe_ends = {"a": 2, "b": 4, "c": 5}
# Model definition
model = pe.ConcreteModel()
model.sequence = pe.Set(initialize=sequence)
model.probes = pe.Set(initialize=probes)
model.starts = pe.Param(model.probes, initialize=probe_starts)
model.ends = pe.Param(model.probes, initialize=probe_ends)
model.assignment = pe.Var(model.sequence, model.probes, domain=pe.Binary)
# Objective
expr = sum([model.assignment[j, i] for j in model.sequence for i in model.probes])
model.objective = pe.Objective(expr=expr, sense=pe.maximize)
我现在有以下三个约束:
- 项目一次只能绑定一个(没有重叠的项目)
- 因为项目有开始和结束位置,所以它们只能在各自的开始和结束后分配
- 如果项目被分配,它们必须从开始到结束全部绑定
# One probe per sequence position
model.one_probe_bound = pe.ConstraintList()
for s in model.sequence:
model.one_probe_bound.add(sum(model.assignment[s, p] for p in model.probes) <= 1)
# No assignment before/after start/end
model.define_length = pe.ConstraintList()
for s in model.sequence:
for p in model.probes:
if s < model.starts[p]:
model.define_length.add(model.assignment[s, p] == 0)
if s > model.ends[p]:
model.define_length.add(model.assignment[s, p] == 0)
上面的两个约束都没有问题,但我找不到从我的第三个条件输入逻辑或的方法。我尝试使用
# Only allow full assignment or none
def disjunct_rule(b, p, i):
m = b.model()
expr = sum(m.assignment[s, p] for s in m.sequence)
if i:
return expr == m.ends[p] - m.starts[p]
else:
return expr == 0
def disjunction_rule(m, p):
return [m.disjunct[p, i] for i in [True, False]]
def xfrm(m):
pe.TransformationFactory("gdp.bigm").apply_to(m)
model.disjunct = pyomo.gdp.Disjunct(model.probes, [True, False], rule=disjunct_rule)
model.disjunction = pyomo.gdp.Disjunction(model.probes, rule=disjunction_rule)
model.xfrm = pe.BuildAction(rule=xfrm)
查看 model.assignment
的矩阵表示,其中 sequence
沿列,probes
沿行,我得到以下内容:
array([[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 1]])
如上所示,我得到的分配没有跨越项目的整个长度(例如,c / 3rd 项目只分配在最后一个位置,而它也应该绑定在前两个位置. 我可以在这个玩具示例中看到的唯一有效解决方案如下:
array([[1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1]])
其中项目 a 和 c 被全部选中,而 b 根本没有被选中。这样我们就匹配了所有约束。我使用的求解器是 glpk
。在此先感谢您的任何建议。
这是一个剪辑....
我提到的另一种方法是为序列中的每个点引入另一个二进制变量,并通过分配探针(以某种方式)控制它。下面的方法应该比那个更有效。
尝试使用更大的数据集...当前只有 1 个可行的解决方案。另外,我 假设 更好的解决方案会使用更少的探针,所以我 re-wrote objective
此解决方案的基础是您必须连接到起点(约束 1)一次和终点(约束 2)一次的约束。并且任何中间连接必须一致(约束3)。
我在一些需要的地方使用了一些 sub-setting。
代码:
# model to make contiguous connections across a sequence
# using as few connections (probes) as possible
import pyomo
import pyomo.environ as pe
sequence = [0, 1, 2, 3, 4, 5]
probes = ["a", "b", "c"]
probe_starts = {"a": 0, "b": 2, "c": 3}
probe_ends = {"a": 2, "b": 4, "c": 5}
# Model definition
model = pe.ConcreteModel()
model.sequence = pe.Set(initialize=sequence)
model.probes = pe.Set(initialize=probes)
model.starts = pe.Param(model.probes, initialize=probe_starts)
model.ends = pe.Param(model.probes, initialize=probe_ends)
model.assign = pe.Var(model.probes, domain=pe.Binary) # 1 if probe p is used...
# Objective
obj = sum(model.assign[p] for p in model.probes) # use as few as possible...?
model.objective = pe.Objective(expr=obj, sense=pe.minimize)
# Constraints
# must connect start once
model.C1 = pe.Constraint(expr=sum(model.assign[p] for p in model.probes
if model.starts[p] == sequence[0]) == 1)
# must connect end once
model.C2 = pe.Constraint(expr=sum(model.assign[p] for p in model.probes
if model.ends[p] == sequence[-1]) == 1)
# must connect any intermediate connections...
# if probe p1 is selected, must select an eligible p2 follow on
def connect(model, p1):
# create subset on the fly of legal follow-on connections
# assumption here that sequence is a sequential list of ints by using the "+1"
p2s = [p for p in model.probes if model.starts[p] == model.ends[p1] + 1]
if not p2s:
return pe.Constraint.Skip
return sum(model.assign[p2] for p2 in p2s) == model.assign[p1]
non_completing_probes = [p for p in model.probes if model.ends[p] != sequence[-1]]
model.C3 = pe.Constraint(non_completing_probes, rule=connect)
solver = pe.SolverFactory('glpk')
result = solver.solve(model)
print(result)
model.display()
产量:
Problem:
- Name: unknown
Lower bound: 2.0
Upper bound: 2.0
Number of objectives: 1
Number of constraints: 4
Number of variables: 4
Number of nonzeros: 5
Sense: minimize
Solver:
- Status: ok
Termination condition: optimal
Statistics:
Branch and bound:
Number of bounded subproblems: 0
Number of created subproblems: 0
Error rc: 0
Time: 0.006771087646484375
Solution:
- number of solutions: 0
number of solutions displayed: 0
Model unknown
Variables:
assign : Size=3, Index=probes
Key : Lower : Value : Upper : Fixed : Stale : Domain
a : 0 : 1.0 : 1 : False : False : Binary
b : 0 : 0.0 : 1 : False : False : Binary
c : 0 : 1.0 : 1 : False : False : Binary
Objectives:
objective : Size=1, Index=None, Active=True
Key : Active : Value
None : True : 2.0
Constraints:
C1 : Size=1
Key : Lower : Body : Upper
None : 1.0 : 1.0 : 1.0
C2 : Size=1
Key : Lower : Body : Upper
None : 1.0 : 1.0 : 1.0
C3 : Size=1
Key : Lower : Body : Upper
a : 0.0 : 0.0 : 0.0