基于变量前缀的子集数据
Subset data based on variable prefix
我有一个大型数据集,其中一个问题的答案分布在各个列中。但是,如果列属于一起,则它们共享相同的前缀。我想知道如何创建基于前缀排序的每个问题的子数据集。
这是一个示例数据集。我希望获得一个高效且易于适应的解决方案来创建仅包含问题一、二或三的值的数据集。
structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8), Question1a = c(1,
1, NA, NA, 1, 1, 1, NA), Question1b = c(NA, 1, NA, 1, NA, 1,
NA, 1), Question1c = c(1, 1, NA, NA, 1, NA, NA, NA), Question2a = c(1,
NA, NA, NA, 1, 1, NA, NA), Question2b = c(NA, 1, NA, 1, NA, NA,
NA, NA), Question3a = c(NA, NA, NA, NA, 1, 1, 1, NA), Question3b = c(NA,
NA, 1, 1, NA, NA, NA, NA)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -8L))
我认为潜在的问题是关于 data-formats。
这里有一些:
library(tidyverse)
structure(
list(
ID = c(1, 2, 3, 4, 5, 6, 7, 8),
Question1a = c(1,
1, NA, NA, 1, 1, 1, NA),
Question1b = c(NA, 1, NA, 1, NA, 1,
NA, 1),
Question1c = c(1, 1, NA, NA, 1, NA, NA, NA),
Question2a = c(1,
NA, NA, NA, 1, 1, NA, NA),
Question2b = c(NA, 1, NA, 1, NA, NA,
NA, NA),
Question3a = c(NA, NA, NA, NA, 1, 1, 1, NA),
Question3b = c(NA,
NA, 1, 1, NA, NA, NA, NA)
),
class = c("tbl_df", "tbl", "data.frame"),
row.names = c(NA, -8L)
) -> square_df
square_df %>%
pivot_longer(-ID,
names_to = c("Question", "Item"),
names_pattern = "Question(\d+)(\w+)") ->
long_df
long_df
#> # A tibble: 56 × 4
#> ID Question Item value
#> <dbl> <chr> <chr> <dbl>
#> 1 1 1 a 1
#> 2 1 1 b NA
#> 3 1 1 c 1
#> 4 1 2 a 1
#> 5 1 2 b NA
#> 6 1 3 a NA
#> 7 1 3 b NA
#> 8 2 1 a 1
#> 9 2 1 b 1
#> 10 2 1 c 1
#> # … with 46 more rows
long_df %>%
na.omit(value) ->
sparse_long_df
sparse_long_df
#> # A tibble: 22 × 4
#> ID Question Item value
#> <dbl> <chr> <chr> <dbl>
#> 1 1 1 a 1
#> 2 1 1 c 1
#> 3 1 2 a 1
#> 4 2 1 a 1
#> 5 2 1 b 1
#> 6 2 1 c 1
#> 7 2 2 b 1
#> 8 3 3 b 1
#> 9 4 1 b 1
#> 10 4 2 b 1
#> # … with 12 more rows
sparse_long_df %>%
nest(data = c(ID, Item, value)) ->
nested_long_df
nested_long_df
#> # A tibble: 3 × 2
#> Question data
#> <chr> <list>
#> 1 1 <tibble [12 × 3]>
#> 2 2 <tibble [5 × 3]>
#> 3 3 <tibble [5 × 3]>
由 reprex package (v2.0.1)
创建于 2022-05-12
您可以使用 sapply
和一个函数:
list_data <- sapply(c("Question1", "Question2", "Question3"),
function(x) df[startsWith(names(df),x)], simplify = FALSE)
这会将所有内容存储在列表中。要将全局环境中的单个数据集作为单个对象获取,请使用:
list2env(list_data, globalenv())
输出
# $Question1
# # A tibble: 8 × 3
# Question1a Question1b Question1c
# <dbl> <dbl> <dbl>
# 1 1 NA 1
# 2 1 1 1
# 3 NA NA NA
# 4 NA 1 NA
# 5 1 NA 1
# 6 1 1 NA
# 7 1 NA NA
# 8 NA 1 NA
#
# $Question2
# # A tibble: 8 × 2
# Question2a Question2b
# <dbl> <dbl>
# 1 1 NA
# 2 NA 1
# 3 NA NA
# 4 NA 1
# 5 1 NA
# 6 1 NA
# 7 NA NA
# 8 NA NA
#
# $Question3
# # A tibble: 8 × 2
# Question3a Question3b
# <dbl> <dbl>
# 1 NA NA
# 2 NA NA
# 3 NA 1
# 4 NA 1
# 5 1 NA
# 6 1 NA
# 7 1 NA
# 8 NA NA
您还可以使用 map
将每个数据帧存储在列表中,例如
library(purrr)
# 3 = number of questions
map(c(1:3),
function(x){
quest <- paste0("Question",x)
select(df, ID, starts_with(quest))
})
输出:
[[1]]
# A tibble: 8 x 4
ID Question1a Question1b Question1c
<dbl> <dbl> <dbl> <dbl>
1 1 1 NA 1
2 2 1 1 1
3 3 NA NA NA
4 4 NA 1 NA
5 5 1 NA 1
6 6 1 1 NA
7 7 1 NA NA
8 8 NA 1 NA
[[2]]
# A tibble: 8 x 3
ID Question2a Question2b
<dbl> <dbl> <dbl>
1 1 1 NA
2 2 NA 1
3 3 NA NA
4 4 NA 1
5 5 1 NA
6 6 1 NA
7 7 NA NA
8 8 NA NA
[[3]]
# A tibble: 8 x 3
ID Question3a Question3b
<dbl> <dbl> <dbl>
1 1 NA NA
2 2 NA NA
3 3 NA 1
4 4 NA 1
5 5 1 NA
6 6 1 NA
7 7 1 NA
8 8 NA NA
我使用 dplyr 包找到了一个非常直观的解决方案,使用 select
和 starts_with
命令。或者,您也可以将 starts_with
命令替换为 contains
,如果您不是通过前缀而是通过其他一些共同特征来识别相似的变量。
Q1 <- Survey %>%
select(
starts_with("Question1")
)
Q2 <- Survey %>%
select(
starts_with("Question2")
)
Q3 <- Survey %>%
select(
starts_with("Question3")
)
我有一个大型数据集,其中一个问题的答案分布在各个列中。但是,如果列属于一起,则它们共享相同的前缀。我想知道如何创建基于前缀排序的每个问题的子数据集。
这是一个示例数据集。我希望获得一个高效且易于适应的解决方案来创建仅包含问题一、二或三的值的数据集。
structure(list(ID = c(1, 2, 3, 4, 5, 6, 7, 8), Question1a = c(1,
1, NA, NA, 1, 1, 1, NA), Question1b = c(NA, 1, NA, 1, NA, 1,
NA, 1), Question1c = c(1, 1, NA, NA, 1, NA, NA, NA), Question2a = c(1,
NA, NA, NA, 1, 1, NA, NA), Question2b = c(NA, 1, NA, 1, NA, NA,
NA, NA), Question3a = c(NA, NA, NA, NA, 1, 1, 1, NA), Question3b = c(NA,
NA, 1, 1, NA, NA, NA, NA)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -8L))
我认为潜在的问题是关于 data-formats。 这里有一些:
library(tidyverse)
structure(
list(
ID = c(1, 2, 3, 4, 5, 6, 7, 8),
Question1a = c(1,
1, NA, NA, 1, 1, 1, NA),
Question1b = c(NA, 1, NA, 1, NA, 1,
NA, 1),
Question1c = c(1, 1, NA, NA, 1, NA, NA, NA),
Question2a = c(1,
NA, NA, NA, 1, 1, NA, NA),
Question2b = c(NA, 1, NA, 1, NA, NA,
NA, NA),
Question3a = c(NA, NA, NA, NA, 1, 1, 1, NA),
Question3b = c(NA,
NA, 1, 1, NA, NA, NA, NA)
),
class = c("tbl_df", "tbl", "data.frame"),
row.names = c(NA, -8L)
) -> square_df
square_df %>%
pivot_longer(-ID,
names_to = c("Question", "Item"),
names_pattern = "Question(\d+)(\w+)") ->
long_df
long_df
#> # A tibble: 56 × 4
#> ID Question Item value
#> <dbl> <chr> <chr> <dbl>
#> 1 1 1 a 1
#> 2 1 1 b NA
#> 3 1 1 c 1
#> 4 1 2 a 1
#> 5 1 2 b NA
#> 6 1 3 a NA
#> 7 1 3 b NA
#> 8 2 1 a 1
#> 9 2 1 b 1
#> 10 2 1 c 1
#> # … with 46 more rows
long_df %>%
na.omit(value) ->
sparse_long_df
sparse_long_df
#> # A tibble: 22 × 4
#> ID Question Item value
#> <dbl> <chr> <chr> <dbl>
#> 1 1 1 a 1
#> 2 1 1 c 1
#> 3 1 2 a 1
#> 4 2 1 a 1
#> 5 2 1 b 1
#> 6 2 1 c 1
#> 7 2 2 b 1
#> 8 3 3 b 1
#> 9 4 1 b 1
#> 10 4 2 b 1
#> # … with 12 more rows
sparse_long_df %>%
nest(data = c(ID, Item, value)) ->
nested_long_df
nested_long_df
#> # A tibble: 3 × 2
#> Question data
#> <chr> <list>
#> 1 1 <tibble [12 × 3]>
#> 2 2 <tibble [5 × 3]>
#> 3 3 <tibble [5 × 3]>
由 reprex package (v2.0.1)
创建于 2022-05-12您可以使用 sapply
和一个函数:
list_data <- sapply(c("Question1", "Question2", "Question3"),
function(x) df[startsWith(names(df),x)], simplify = FALSE)
这会将所有内容存储在列表中。要将全局环境中的单个数据集作为单个对象获取,请使用:
list2env(list_data, globalenv())
输出
# $Question1
# # A tibble: 8 × 3
# Question1a Question1b Question1c
# <dbl> <dbl> <dbl>
# 1 1 NA 1
# 2 1 1 1
# 3 NA NA NA
# 4 NA 1 NA
# 5 1 NA 1
# 6 1 1 NA
# 7 1 NA NA
# 8 NA 1 NA
#
# $Question2
# # A tibble: 8 × 2
# Question2a Question2b
# <dbl> <dbl>
# 1 1 NA
# 2 NA 1
# 3 NA NA
# 4 NA 1
# 5 1 NA
# 6 1 NA
# 7 NA NA
# 8 NA NA
#
# $Question3
# # A tibble: 8 × 2
# Question3a Question3b
# <dbl> <dbl>
# 1 NA NA
# 2 NA NA
# 3 NA 1
# 4 NA 1
# 5 1 NA
# 6 1 NA
# 7 1 NA
# 8 NA NA
您还可以使用 map
将每个数据帧存储在列表中,例如
library(purrr)
# 3 = number of questions
map(c(1:3),
function(x){
quest <- paste0("Question",x)
select(df, ID, starts_with(quest))
})
输出:
[[1]]
# A tibble: 8 x 4
ID Question1a Question1b Question1c
<dbl> <dbl> <dbl> <dbl>
1 1 1 NA 1
2 2 1 1 1
3 3 NA NA NA
4 4 NA 1 NA
5 5 1 NA 1
6 6 1 1 NA
7 7 1 NA NA
8 8 NA 1 NA
[[2]]
# A tibble: 8 x 3
ID Question2a Question2b
<dbl> <dbl> <dbl>
1 1 1 NA
2 2 NA 1
3 3 NA NA
4 4 NA 1
5 5 1 NA
6 6 1 NA
7 7 NA NA
8 8 NA NA
[[3]]
# A tibble: 8 x 3
ID Question3a Question3b
<dbl> <dbl> <dbl>
1 1 NA NA
2 2 NA NA
3 3 NA 1
4 4 NA 1
5 5 1 NA
6 6 1 NA
7 7 1 NA
8 8 NA NA
我使用 dplyr 包找到了一个非常直观的解决方案,使用 select
和 starts_with
命令。或者,您也可以将 starts_with
命令替换为 contains
,如果您不是通过前缀而是通过其他一些共同特征来识别相似的变量。
Q1 <- Survey %>%
select(
starts_with("Question1")
)
Q2 <- Survey %>%
select(
starts_with("Question2")
)
Q3 <- Survey %>%
select(
starts_with("Question3")
)