从一维数组获取二维数组(一种邻接矩阵)的有效方法
Efficient way to get 2d array (kind of adjacency matrix) from 1d array
对于数组,例如 a = np.array([1,2,1,0,0,1,1,2,2,2])
,需要创建邻接“矩阵”A
之类的东西。 IE。 A
是一个对称的 (n, n)
numpy 数组,其中 n = len(a)
和 A[i,j] = 1
如果 a[i] == a[j]
和 0
否则(i = 0...n-1
和 j = 0...n-1
):
0 1 2 3 4 5 6 7 8 9
0 1 0 1 0 0 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1
2 1 0 0 1 1 0 0 0
3 1 1 0 0 0 0 0
4 1 0 0 0 0 0
5 1 1 0 0 0
6 1 0 0 0
7 1 1 1
8 1 1
9 1
简单的解决方案是
n = len(a)
A = np.zeros([n, n]).astype(int)
for i in range(n):
for j in range(n):
if a[i] == a[j]:
A[i, j] = 1
else:
A[i, j] = 0
能否以 numpy
方式完成,即没有循环?
您可以使用 numpy broadcasting:
b = (a[:,None]==a).astype(int)
df = pd.DataFrame(b)
输出:
0 1 2 3 4 5 6 7 8 9
0 1 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 1 1 1
2 1 0 1 0 0 1 1 0 0 0
3 0 0 0 1 1 0 0 0 0 0
4 0 0 0 1 1 0 0 0 0 0
5 1 0 1 0 0 1 1 0 0 0
6 1 0 1 0 0 1 1 0 0 0
7 0 1 0 0 0 0 0 1 1 1
8 0 1 0 0 0 0 0 1 1 1
9 0 1 0 0 0 0 0 1 1 1
如果只需要上三角,使用numpy.tril_indices
:
b = (a[:,None]==a).astype(float)
b[np.tril_indices_from(b, k=-1)] = np.nan
df = pd.DataFrame(b)
输出:
0 1 2 3 4 5 6 7 8 9
0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0
1 NaN 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
2 NaN NaN 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0
3 NaN NaN NaN 1.0 1.0 0.0 0.0 0.0 0.0 0.0
4 NaN NaN NaN NaN 1.0 0.0 0.0 0.0 0.0 0.0
5 NaN NaN NaN NaN NaN 1.0 1.0 0.0 0.0 0.0
6 NaN NaN NaN NaN NaN NaN 1.0 0.0 0.0 0.0
7 NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0
8 NaN NaN NaN NaN NaN NaN NaN NaN 1.0 1.0
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0
对于数组,例如 a = np.array([1,2,1,0,0,1,1,2,2,2])
,需要创建邻接“矩阵”A
之类的东西。 IE。 A
是一个对称的 (n, n)
numpy 数组,其中 n = len(a)
和 A[i,j] = 1
如果 a[i] == a[j]
和 0
否则(i = 0...n-1
和 j = 0...n-1
):
0 1 2 3 4 5 6 7 8 9
0 1 0 1 0 0 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1
2 1 0 0 1 1 0 0 0
3 1 1 0 0 0 0 0
4 1 0 0 0 0 0
5 1 1 0 0 0
6 1 0 0 0
7 1 1 1
8 1 1
9 1
简单的解决方案是
n = len(a)
A = np.zeros([n, n]).astype(int)
for i in range(n):
for j in range(n):
if a[i] == a[j]:
A[i, j] = 1
else:
A[i, j] = 0
能否以 numpy
方式完成,即没有循环?
您可以使用 numpy broadcasting:
b = (a[:,None]==a).astype(int)
df = pd.DataFrame(b)
输出:
0 1 2 3 4 5 6 7 8 9
0 1 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 1 1 1
2 1 0 1 0 0 1 1 0 0 0
3 0 0 0 1 1 0 0 0 0 0
4 0 0 0 1 1 0 0 0 0 0
5 1 0 1 0 0 1 1 0 0 0
6 1 0 1 0 0 1 1 0 0 0
7 0 1 0 0 0 0 0 1 1 1
8 0 1 0 0 0 0 0 1 1 1
9 0 1 0 0 0 0 0 1 1 1
如果只需要上三角,使用numpy.tril_indices
:
b = (a[:,None]==a).astype(float)
b[np.tril_indices_from(b, k=-1)] = np.nan
df = pd.DataFrame(b)
输出:
0 1 2 3 4 5 6 7 8 9
0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0
1 NaN 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
2 NaN NaN 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0
3 NaN NaN NaN 1.0 1.0 0.0 0.0 0.0 0.0 0.0
4 NaN NaN NaN NaN 1.0 0.0 0.0 0.0 0.0 0.0
5 NaN NaN NaN NaN NaN 1.0 1.0 0.0 0.0 0.0
6 NaN NaN NaN NaN NaN NaN 1.0 0.0 0.0 0.0
7 NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0
8 NaN NaN NaN NaN NaN NaN NaN NaN 1.0 1.0
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0