Pandas - 添加新列 - 使用循环
Pandas - Adding New Columns - Using Loops
我是 python 的新手,正在处理第一列为 'Country' 后跟 144 列数字数据的数据框。
目标和预期结果:
需要创建新列,平均为 3 列。例如:第一个新列是前 3 列数值数据(列号 1,2 和 3)的平均值。下一个新列是后续 3 列(列号 4,5 和 6)的平均值,依此类推。由于此数据集有 144 列,我们需要创建 48 个新列 (144/3)。请在下面找到数据框的快照
我正在使用以下代码,这绝对不是理想的实现方式,应该有更好的实现方式。
有人可以建议是否可以使用循环函数实现输出吗?
df = pd.read_excel('/content/df_Data.xlsx')
df[2010_1] = df[[1,2,3]].mean(axis=1)
df[2010_2] = df[[4,5,6]].mean(axis=1)
df[2010_3] = df[[7,8,9]].mean(axis=1)
df[2010_4] = df[[10,11,12]].mean(axis=1)
df[2011_1] = df[[13,14,15]].mean(axis=1)
df[2011_2] = df[[16,17,18]].mean(axis=1)
df[2011_3] = df[[19,20,21]].mean(axis=1)
df[2011_4] = df[[22,23,24]].mean(axis=1)
df[2012_1] = df[[25,26,27]].mean(axis=1)
df[2012_2] = df[[28,29,30]].mean(axis=1)
df[2012_3] = df[[31,32,33]].mean(axis=1)
df[2012_4] = df[[34,35,36]].mean(axis=1)
df[2013_1] = df[[37,38,39]].mean(axis=1)
df[2013_2] = df[[40,41,42]].mean(axis=1)
df[2013_3] = df[[43,44,45]].mean(axis=1)
df[2013_4] = df[[46,47,48]].mean(axis=1)
df[2014_1] = df[[49,50,51]].mean(axis=1)
df[2014_2] = df[[52,53,54]].mean(axis=1)
df[2014_3] = df[[55,56,57]].mean(axis=1)
df[2014_4] = df[[58,59,60]].mean(axis=1)
df[2015_1] = df[[61,62,63]].mean(axis=1)
df[2015_2] = df[[64,65,66]].mean(axis=1)
df[2015_3] = df[[67,68,69]].mean(axis=1)
df[2015_4] = df[[70,71,72]].mean(axis=1)
df[2016_1] = df[[73,74,75]].mean(axis=1)
df[2016_2] = df[[76,77,78]].mean(axis=1)
df[2016_3] = df[[79,80,81]].mean(axis=1)
df[2016_4] = df[[82,83,84]].mean(axis=1)
df[2017_1] = df[[85,86,87]].mean(axis=1)
df[2017_2] = df[[88,89,90]].mean(axis=1)
df[2017_3] = df[[91,92,93]].mean(axis=1)
df[2017_4] = df[[94,95,96]].mean(axis=1)
df[2018_1] = df[[97,98,99]].mean(axis=1)
df[2018_2] = df[[100,101,102]].mean(axis=1)
df[2018_3] = df[[103,104,105]].mean(axis=1)
df[2018_4] = df[[106,107,108]].mean(axis=1)
df[2019_1] = df[[109,110,111]].mean(axis=1)
df[2019_2] = df[[112,113,114]].mean(axis=1)
df[2019_3] = df[[115,116,117]].mean(axis=1)
df[2019_4] = df[[118,119,120]].mean(axis=1)
df[2020_1] = df[[121,122,123]].mean(axis=1)
df[2020_2] = df[[124,125,126]].mean(axis=1)
df[2020_3] = df[[127,128,129]].mean(axis=1)
df[2020_4] = df[[130,131,132]].mean(axis=1)
df[2021_1] = df[[133,134,135]].mean(axis=1)
df[2021_2] = df[[136,137,138]].mean(axis=1)
df[2021_3] = df[[139,140,141]].mean(axis=1)
df[2021_4] = df[[142,143,144]].mean(axis=1)
无循环解决方案
out = df.groupby(np.arange(df.shape[1]) // 3, axis=1).mean()
out.columns = pd.period_range('2010', freq='Q', periods=out.shape[1])
已解释
为列轴创建一个分组器,它将列划分为 48 个连续的集合。这可以使用以下代码实现:
>>> np.arange(df.shape[1]) // 3
array([ 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,
5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11,
11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16,
17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22,
22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28,
28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33,
34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39,
39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45,
45, 45, 46, 46, 46, 47, 47, 47], dtype=int32)
现在使用上述分区将数据帧沿列轴分组并计算 mean
,然后生成一个从 2010
开始的具有季度频率的周期范围并将该周期范围分配给列目标数据框。可以使用以下代码生成周期范围:
>>> pd.period_range('2010', freq='Q', periods=out.shape[1])
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4', '2011Q1', '2011Q2',
'2011Q3', '2011Q4', '2012Q1', '2012Q2', '2012Q3', '2012Q4',
'2013Q1', '2013Q2', '2013Q3', '2013Q4', '2014Q1', '2014Q2',
'2014Q3', '2014Q4', '2015Q1', '2015Q2', '2015Q3', '2015Q4',
'2016Q1', '2016Q2', '2016Q3', '2016Q4', '2017Q1', '2017Q2',
'2017Q3', '2017Q4', '2018Q1', '2018Q2', '2018Q3', '2018Q4',
'2019Q1', '2019Q2', '2019Q3', '2019Q4', '2020Q1', '2020Q2',
'2020Q3', '2020Q4', '2021Q1', '2021Q2', '2021Q3', '2021Q4'],
dtype='period[Q-DEC]')
比其他答案冗长得多,但希望仍然有用。这个想法是 (1) 将“宽 table” 融化为“长 table”,(2) 添加一个 year_quarter 列,以及 (3) 在该列上分组。
import pandas as pd
import numpy as np
num_cols = 14
num_rows = 5
np.random.seed(1)
#Create a table in the same shape that you describe
#columns are ints which I'm guessing represent months
df = pd.DataFrame({
c+1:np.random.randint(1,20,num_rows) for c in range(num_cols)
})
#Melt the table to "long form" where each row has the previous column name and value
long_df = df.melt(var_name='month',value_name='val')
#Add quarter_year column
years = long_df['month'].sub(1).floordiv(12).add(2010)
quarters = long_df['month'].sub(1).mod(12).floordiv(3).add(1) #better way to do this?
long_df['year_quarter'] = years.astype(str)+'_'+quarters.astype(str)
#Use groupby to get the mean value per year_quarter (you can reshape the table later if you need)
long_df.groupby('year_quarter')['val'].mean().reset_index(name='mean_quarter_values')
这是宽 df
table 的样子
long_df
table
最终输出
我是 python 的新手,正在处理第一列为 'Country' 后跟 144 列数字数据的数据框。
目标和预期结果:
需要创建新列,平均为 3 列。例如:第一个新列是前 3 列数值数据(列号 1,2 和 3)的平均值。下一个新列是后续 3 列(列号 4,5 和 6)的平均值,依此类推。由于此数据集有 144 列,我们需要创建 48 个新列 (144/3)。请在下面找到数据框的快照
我正在使用以下代码,这绝对不是理想的实现方式,应该有更好的实现方式。
有人可以建议是否可以使用循环函数实现输出吗?
df = pd.read_excel('/content/df_Data.xlsx')
df[2010_1] = df[[1,2,3]].mean(axis=1)
df[2010_2] = df[[4,5,6]].mean(axis=1)
df[2010_3] = df[[7,8,9]].mean(axis=1)
df[2010_4] = df[[10,11,12]].mean(axis=1)
df[2011_1] = df[[13,14,15]].mean(axis=1)
df[2011_2] = df[[16,17,18]].mean(axis=1)
df[2011_3] = df[[19,20,21]].mean(axis=1)
df[2011_4] = df[[22,23,24]].mean(axis=1)
df[2012_1] = df[[25,26,27]].mean(axis=1)
df[2012_2] = df[[28,29,30]].mean(axis=1)
df[2012_3] = df[[31,32,33]].mean(axis=1)
df[2012_4] = df[[34,35,36]].mean(axis=1)
df[2013_1] = df[[37,38,39]].mean(axis=1)
df[2013_2] = df[[40,41,42]].mean(axis=1)
df[2013_3] = df[[43,44,45]].mean(axis=1)
df[2013_4] = df[[46,47,48]].mean(axis=1)
df[2014_1] = df[[49,50,51]].mean(axis=1)
df[2014_2] = df[[52,53,54]].mean(axis=1)
df[2014_3] = df[[55,56,57]].mean(axis=1)
df[2014_4] = df[[58,59,60]].mean(axis=1)
df[2015_1] = df[[61,62,63]].mean(axis=1)
df[2015_2] = df[[64,65,66]].mean(axis=1)
df[2015_3] = df[[67,68,69]].mean(axis=1)
df[2015_4] = df[[70,71,72]].mean(axis=1)
df[2016_1] = df[[73,74,75]].mean(axis=1)
df[2016_2] = df[[76,77,78]].mean(axis=1)
df[2016_3] = df[[79,80,81]].mean(axis=1)
df[2016_4] = df[[82,83,84]].mean(axis=1)
df[2017_1] = df[[85,86,87]].mean(axis=1)
df[2017_2] = df[[88,89,90]].mean(axis=1)
df[2017_3] = df[[91,92,93]].mean(axis=1)
df[2017_4] = df[[94,95,96]].mean(axis=1)
df[2018_1] = df[[97,98,99]].mean(axis=1)
df[2018_2] = df[[100,101,102]].mean(axis=1)
df[2018_3] = df[[103,104,105]].mean(axis=1)
df[2018_4] = df[[106,107,108]].mean(axis=1)
df[2019_1] = df[[109,110,111]].mean(axis=1)
df[2019_2] = df[[112,113,114]].mean(axis=1)
df[2019_3] = df[[115,116,117]].mean(axis=1)
df[2019_4] = df[[118,119,120]].mean(axis=1)
df[2020_1] = df[[121,122,123]].mean(axis=1)
df[2020_2] = df[[124,125,126]].mean(axis=1)
df[2020_3] = df[[127,128,129]].mean(axis=1)
df[2020_4] = df[[130,131,132]].mean(axis=1)
df[2021_1] = df[[133,134,135]].mean(axis=1)
df[2021_2] = df[[136,137,138]].mean(axis=1)
df[2021_3] = df[[139,140,141]].mean(axis=1)
df[2021_4] = df[[142,143,144]].mean(axis=1)
无循环解决方案
out = df.groupby(np.arange(df.shape[1]) // 3, axis=1).mean()
out.columns = pd.period_range('2010', freq='Q', periods=out.shape[1])
已解释
为列轴创建一个分组器,它将列划分为 48 个连续的集合。这可以使用以下代码实现:
>>> np.arange(df.shape[1]) // 3
array([ 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,
5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11,
11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16,
17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22,
22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28,
28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33,
34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39,
39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45,
45, 45, 46, 46, 46, 47, 47, 47], dtype=int32)
现在使用上述分区将数据帧沿列轴分组并计算 mean
,然后生成一个从 2010
开始的具有季度频率的周期范围并将该周期范围分配给列目标数据框。可以使用以下代码生成周期范围:
>>> pd.period_range('2010', freq='Q', periods=out.shape[1])
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4', '2011Q1', '2011Q2',
'2011Q3', '2011Q4', '2012Q1', '2012Q2', '2012Q3', '2012Q4',
'2013Q1', '2013Q2', '2013Q3', '2013Q4', '2014Q1', '2014Q2',
'2014Q3', '2014Q4', '2015Q1', '2015Q2', '2015Q3', '2015Q4',
'2016Q1', '2016Q2', '2016Q3', '2016Q4', '2017Q1', '2017Q2',
'2017Q3', '2017Q4', '2018Q1', '2018Q2', '2018Q3', '2018Q4',
'2019Q1', '2019Q2', '2019Q3', '2019Q4', '2020Q1', '2020Q2',
'2020Q3', '2020Q4', '2021Q1', '2021Q2', '2021Q3', '2021Q4'],
dtype='period[Q-DEC]')
比其他答案冗长得多,但希望仍然有用。这个想法是 (1) 将“宽 table” 融化为“长 table”,(2) 添加一个 year_quarter 列,以及 (3) 在该列上分组。
import pandas as pd
import numpy as np
num_cols = 14
num_rows = 5
np.random.seed(1)
#Create a table in the same shape that you describe
#columns are ints which I'm guessing represent months
df = pd.DataFrame({
c+1:np.random.randint(1,20,num_rows) for c in range(num_cols)
})
#Melt the table to "long form" where each row has the previous column name and value
long_df = df.melt(var_name='month',value_name='val')
#Add quarter_year column
years = long_df['month'].sub(1).floordiv(12).add(2010)
quarters = long_df['month'].sub(1).mod(12).floordiv(3).add(1) #better way to do this?
long_df['year_quarter'] = years.astype(str)+'_'+quarters.astype(str)
#Use groupby to get the mean value per year_quarter (you can reshape the table later if you need)
long_df.groupby('year_quarter')['val'].mean().reset_index(name='mean_quarter_values')
这是宽 df
table 的样子
long_df
table
最终输出