按几何坐标(Y 轴)聚类对象
Cluster objects by geometric coordinates (Y axis)
我有一个 pandas DataFrame,其中包含描述矩形的记录以及所有 4 个点的绝对坐标:TL(左上)、TR(右上)、BL(左下)和BR(右下角)。实际上,矩形似乎遵循类似行的模式,其中有明显的集群形成“行”,如下图所示:
数据如下所示:
tl_x tl_y tr_x tr_y br_x br_y bl_x bl_y ht wd
0 1567 136 1707 136 1707 153 1567 153 17 140
1 1360 154 1548 154 1548 175 1360 175 21 188
2 1567 154 1747 154 1747 174 1567 174 20 180
3 1311 175 1548 175 1548 196 1311 196 21 237
4 1565 174 1741 174 1741 199 1565 199 25 176
5 1566 196 1753 196 1753 220 1566 220 24 187
...
我需要沿着 bl_y
或 br_y
列(底部 Y 坐标)对这些对象进行聚类,以生成“行”的二维列表,例如:
如您所见,每个“行”中的对象可能具有略微不同的 Y 坐标(在每个群集中并不完全相同)。我基本上需要的是一些功能来添加一个单独的例如clustered_y
列到 DF,然后按此列排序。
最简单的方法是什么?
鉴于您提供的数据框:
import pandas as pd
df = pd.DataFrame(
{
"tl_x": {0: 1567, 1: 1360, 2: 1567, 3: 1311, 4: 1565, 5: 1566},
"tl_y": {0: 136, 1: 154, 2: 154, 3: 175, 4: 174, 5: 196},
"tr_x": {0: 1707, 1: 1548, 2: 1747, 3: 1548, 4: 1741, 5: 1753},
"tr_y": {0: 136, 1: 154, 2: 154, 3: 175, 4: 174, 5: 196},
"br_x": {0: 1707, 1: 1548, 2: 1747, 3: 1548, 4: 1741, 5: 1753},
"br_y": {0: 153, 1: 175, 2: 174, 3: 196, 4: 199, 5: 220},
"bl_x": {0: 1567, 1: 1360, 2: 1567, 3: 1311, 4: 1565, 5: 1566},
"bl_y": {0: 153, 1: 175, 2: 174, 3: 196, 4: 199, 5: 220},
"ht": {0: 17, 1: 21, 2: 20, 3: 21, 4: 25, 5: 24},
"wd": {0: 140, 1: 188, 2: 180, 3: 237, 4: 176, 5: 187},
}
)
这是一种方法:
# Calculate distance between "br_y" values
df = df.sort_values(by="br_y")
df["previous"] = df["br_y"].shift(1).fillna(method="bfill")
df["distance"] = df["br_y"] - df["previous"]
# Group values if distance > 5% of "br_y" values mean (arbitrarily chosen)
clusters = df.copy().loc[df["distance"] > 0.05 * df["br_y"].mean()]
clusters["clustered_br_y"] = [f"row{i}" for i in range(clusters.shape[0])]
# Add clusters back to dataframe and cleanup
df = (
pd.merge(
how="left",
left=df,
right=clusters["clustered_br_y"],
left_index=True,
right_index=True,
)
.fillna(method="ffill")
.fillna(method="bfill")
.drop(columns=["previous", "distance"])
.reset_index(drop=True)
)
tl_x tl_y tr_x tr_y br_x br_y bl_x bl_y ht wd clustered_br_y
0 1567 136 1707 136 1707 153 1567 153 17 140 row0
1 1567 154 1747 154 1747 174 1567 174 20 180 row0
2 1360 154 1548 154 1548 175 1360 175 21 188 row0
3 1311 175 1548 175 1548 196 1311 196 21 237 row1
4 1565 174 1741 174 1741 199 1565 199 25 176 row1
5 1566 196 1753 196 1753 220 1566 220 24 187 row2
我有一个 pandas DataFrame,其中包含描述矩形的记录以及所有 4 个点的绝对坐标:TL(左上)、TR(右上)、BL(左下)和BR(右下角)。实际上,矩形似乎遵循类似行的模式,其中有明显的集群形成“行”,如下图所示:
数据如下所示:
tl_x tl_y tr_x tr_y br_x br_y bl_x bl_y ht wd
0 1567 136 1707 136 1707 153 1567 153 17 140
1 1360 154 1548 154 1548 175 1360 175 21 188
2 1567 154 1747 154 1747 174 1567 174 20 180
3 1311 175 1548 175 1548 196 1311 196 21 237
4 1565 174 1741 174 1741 199 1565 199 25 176
5 1566 196 1753 196 1753 220 1566 220 24 187
...
我需要沿着 bl_y
或 br_y
列(底部 Y 坐标)对这些对象进行聚类,以生成“行”的二维列表,例如:
如您所见,每个“行”中的对象可能具有略微不同的 Y 坐标(在每个群集中并不完全相同)。我基本上需要的是一些功能来添加一个单独的例如clustered_y
列到 DF,然后按此列排序。
最简单的方法是什么?
鉴于您提供的数据框:
import pandas as pd
df = pd.DataFrame(
{
"tl_x": {0: 1567, 1: 1360, 2: 1567, 3: 1311, 4: 1565, 5: 1566},
"tl_y": {0: 136, 1: 154, 2: 154, 3: 175, 4: 174, 5: 196},
"tr_x": {0: 1707, 1: 1548, 2: 1747, 3: 1548, 4: 1741, 5: 1753},
"tr_y": {0: 136, 1: 154, 2: 154, 3: 175, 4: 174, 5: 196},
"br_x": {0: 1707, 1: 1548, 2: 1747, 3: 1548, 4: 1741, 5: 1753},
"br_y": {0: 153, 1: 175, 2: 174, 3: 196, 4: 199, 5: 220},
"bl_x": {0: 1567, 1: 1360, 2: 1567, 3: 1311, 4: 1565, 5: 1566},
"bl_y": {0: 153, 1: 175, 2: 174, 3: 196, 4: 199, 5: 220},
"ht": {0: 17, 1: 21, 2: 20, 3: 21, 4: 25, 5: 24},
"wd": {0: 140, 1: 188, 2: 180, 3: 237, 4: 176, 5: 187},
}
)
这是一种方法:
# Calculate distance between "br_y" values
df = df.sort_values(by="br_y")
df["previous"] = df["br_y"].shift(1).fillna(method="bfill")
df["distance"] = df["br_y"] - df["previous"]
# Group values if distance > 5% of "br_y" values mean (arbitrarily chosen)
clusters = df.copy().loc[df["distance"] > 0.05 * df["br_y"].mean()]
clusters["clustered_br_y"] = [f"row{i}" for i in range(clusters.shape[0])]
# Add clusters back to dataframe and cleanup
df = (
pd.merge(
how="left",
left=df,
right=clusters["clustered_br_y"],
left_index=True,
right_index=True,
)
.fillna(method="ffill")
.fillna(method="bfill")
.drop(columns=["previous", "distance"])
.reset_index(drop=True)
)
tl_x tl_y tr_x tr_y br_x br_y bl_x bl_y ht wd clustered_br_y
0 1567 136 1707 136 1707 153 1567 153 17 140 row0
1 1567 154 1747 154 1747 174 1567 174 20 180 row0
2 1360 154 1548 154 1548 175 1360 175 21 188 row0
3 1311 175 1548 175 1548 196 1311 196 21 237 row1
4 1565 174 1741 174 1741 199 1565 199 25 176 row1
5 1566 196 1753 196 1753 220 1566 220 24 187 row2