如何清除我的 BezierCurve 向量以停止在彼此之上写入坐标?
How to clear my BezierCurve vector to stop writing coordinates on top of each other?
我构建了一个贝塞尔曲线工具,每次计算每个曲线段的坐标时,它们都存储在一个向量中。每一帧我都一遍又一遍地在上面添加整条曲线的点。也就是说,第 1 帧可能有 { p1, p2, p3 },然后第 2 帧可能有 { p1, p2, p3, p1, p2, p3 } 等等。当渲染函数末尾的循环在点 p3 和 p1 之间绘制线时,这将导致线自行回环。我正在努力寻找应该在哪里以及如何清除帧之间的 BezierCurve 矢量。在glClear()
之后或glSwapBuffers()
之前清空,只显示之前绘制的曲线段,点与点之间有一条直线。
我基本上希望点之间的直线消失,我知道为什么会这样。我的代码如下:
#include <iostream>
#include <stdlib.h>
#include <GL/glut.h>
#include <vector>
#include <math.h>
using namespace std;
//Point class for taking the points
class Point {
public:
float x, y;
void setxy(float x2, float y2)
{
x = x2; y = y2;
}
//operator overloading for '=' sign
const Point& operator=(const Point& rPoint)
{
x = rPoint.x;
y = rPoint.y;
return *this;
}
};
int SCREEN_HEIGHT = 500;
vector<Point> Points;
Point Tangent;
Point inverseTangent;
Point cursorLocationLive;
int TangentsSize = 0;
vector<Point> Tangents(TangentsSize);
vector<Point> inverseTangents(TangentsSize);
vector<Point> BezierCurve;
bool MouseReleased = false;
void drawDot(Point p1)
{
glBegin(GL_POINTS);
glVertex2i(p1.x, p1.y);
glEnd();
}
void drawLine(Point p1, Point p2)
{
glBegin(GL_LINE_STRIP);
glVertex2f(p1.x, p1.y);
glVertex2f(p2.x, p2.y);
glEnd();
}
float interpolate(float n1, float n2, float perc)
{
float diff = n2 - n1;
return n1 + (diff * perc);
}
void myMouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON)
{
if (state == GLUT_DOWN)
{
MouseReleased = false;
// Store points into Points vector on click
Point point;
point.setxy(x, SCREEN_HEIGHT - y);
Points.push_back(point);
// Tangents are set to the cursor position
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
/*Add new element to Tangent & inverseTangent so when we draw the curve
the tangents are accessed at the right index*/
TangentsSize++;
}
else if (state == GLUT_UP)
{
MouseReleased = true;
// Upon mouse release store tangent and inverse tangent into separate vectors
Tangents.push_back(Tangent);
inverseTangents.push_back(inverseTangent);
}
}
}
void passiveMotion(int x, int y)
{
// Sets the location of cursor while moving with no buttons pressed
cursorLocationLive.setxy(x, SCREEN_HEIGHT - y);
}
void motion(int x, int y)
{
// Sets the coordinates of the tangents when mouse moves with a button held down
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
}
void myDisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
// Draw main points in red
glColor3f(255, 0, 0);
for (int i = 0; i < Points.size(); i++)
{
drawDot(Points[i]);
}
// If there is a starting point draw a line to cursor from last drawn point in passive motion
if (Points.size() > 0)
{
glColor3f(0, 0, 0);
drawLine(Points[Points.size() - 1], cursorLocationLive);
}
// Draw live tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangent);
drawDot(inverseTangent);
// Draw live tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangent, inverseTangent);
for (int i = 0; i < Tangents.size(); i++)
{
// Draw stored tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangents[i]);
drawDot(inverseTangents[i]);
// Draw stored tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangents[i], inverseTangents[i]);
}
// Loop through all points
for (int i = 0; i < Points.size(); i++)
{
// If there are two points draw the first segment
if (Points.size() == 2)
{
// p1 is the start of the curve set at first point
Point p1;
p1 = Points[0];
float i;
// Calculate curve coordinates
for (float j = 0; j <= 100; j++)
{
i = j / 100;
// The Green Lines
float xa = interpolate(Points[0].x, inverseTangents[0].x, i);
float ya = interpolate(Points[0].y, inverseTangents[0].y, i);
float xb = interpolate(inverseTangents[0].x, inverseTangent.x, i);
float yb = interpolate(inverseTangents[0].y, inverseTangent.y, i);
float xc = interpolate(inverseTangent.x, Points[1].x, i);
float yc = interpolate(inverseTangent.y, Points[1].y, i);
// The Blue Line
float xm = interpolate(xa, xb, i);
float ym = interpolate(ya, yb, i);
float xn = interpolate(xb, xc, i);
float yn = interpolate(yb, yc, i);
// The Black Dot
float x2 = interpolate(xm, xn, i);
float y2 = interpolate(ym, yn, i);
Point p2;
p2.setxy(x2, y2);
drawLine(p1, p2);
p1 = p2;
// Prevents curves generated during mouse motion from being stored
if (MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
}
}
// Second segment onwards
else if (Points.size() > 2)
{
// p1 is the start of the curve set to second last point
Point p1;
p1 = Points[Points.size() - 2];
float i;
// Calculate curve coordinates
for (float j = 0; j <= 100; j++)
{
i = j / 100;
// The Green Lines
float xa = interpolate(Points[Points.size() - 2].x, Tangents[TangentsSize - 2].x, i);
float ya = interpolate(Points[Points.size() - 2].y, Tangents[TangentsSize - 2].y, i);
float xb = interpolate(Tangents[TangentsSize - 2].x, inverseTangent.x, i);
float yb = interpolate(Tangents[TangentsSize - 2].y, inverseTangent.y, i);
float xc = interpolate(inverseTangent.x, Points[Points.size() - 1].x, i);
float yc = interpolate(inverseTangent.y, Points[Points.size() - 1].y, i);
// The Blue Line
float xm = interpolate(xa, xb, i);
float ym = interpolate(ya, yb, i);
float xn = interpolate(xb, xc, i);
float yn = interpolate(yb, yc, i);
// The Black Dot
float x2 = interpolate(xm, xn, i);
float y2 = interpolate(ym, yn, i);
Point p2;
p2.setxy(x2, y2);
drawLine(p1, p2);
p1 = p2;
// Prevents curves generated during mouse motion from being stored
if (MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
}
}
}
// Draw all bezier curvature
for (int i = 1; i < BezierCurve.size(); i++)
{
drawLine(BezierCurve[i - 1], BezierCurve[i]);
}
glutSwapBuffers();
}
void timer(int)
{
glutTimerFunc(1000 / 60, timer, 0);
glutPostRedisplay();
}
int main(int argc, char* argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(640, 500);
glutInitWindowPosition(100, 150);
glutCreateWindow("Bezier Curve");
glutDisplayFunc(myDisplay);
glutIdleFunc(myDisplay);
glutTimerFunc(0, timer, 0);
glutMouseFunc(myMouse);
glutPassiveMotionFunc(passiveMotion);
glutMotionFunc(motion);
glClearColor(255, 255, 255, 0.0);
glPointSize(3);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 500.0);
glutMainLoop();
return 0;
}
您需要检测鼠标点击何时从向下变为向上:
bool prevMouse;
...
// at the end of Display()
prevMouse = MouseReleased;
然后我们检查鼠标点击何时从按下变为释放并添加行 BezierCurve
:
if (PrevMouse == 0 && MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
for 循环中的两个代码路径,if (Points.size() == 2)
和 else if (Points.size() > 2)
可以简化为 if (Points.size() >= 2)
,就此而言,for 循环是无关紧要的,我们不需要要更新之前任何点的贝塞尔曲线,只需更新两个最新点 Points[Points.size() - 2]
和 Points[Points.size() - 1]
.
之间的曲线
最终代码:
#include <iostream>
#include <stdlib.h>
#include <GL/glut.h>
#include <vector>
#include <math.h>
using namespace std;
//Point class for taking the points
class Point {
public:
float x, y;
void setxy(float x2, float y2)
{
x = x2; y = y2;
}
//operator overloading for '=' sign
const Point& operator=(const Point& rPoint)
{
x = rPoint.x;
y = rPoint.y;
return *this;
}
};
int SCREEN_HEIGHT = 500;
vector<Point> Points;
Point Tangent;
Point inverseTangent;
Point cursorLocationLive;
int TangentsSize = 0;
vector<Point> Tangents(TangentsSize);
vector<Point> inverseTangents(TangentsSize);
vector<Point> BezierCurve;
bool MouseReleased = false;
bool PrevMouse = false;
void drawDot(Point p1)
{
glBegin(GL_POINTS);
glVertex2i(p1.x, p1.y);
glEnd();
}
void drawLine(Point p1, Point p2)
{
glBegin(GL_LINE_STRIP);
glVertex2f(p1.x, p1.y);
glVertex2f(p2.x, p2.y);
glEnd();
}
float interpolate(float n1, float n2, float perc)
{
float diff = n2 - n1;
return n1 + (diff * perc);
}
void myMouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON)
{
if (state == GLUT_DOWN)
{
MouseReleased = false;
// Store points into Points vector on click
Point point;
point.setxy(x, SCREEN_HEIGHT - y);
Points.push_back(point);
// Tangents are set to the cursor position
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
/*Add new element to Tangent & inverseTangent so when we draw the curve
the tangents are accessed at the right index*/
TangentsSize++;
}
else if (state == GLUT_UP)
{
MouseReleased = true;
// Upon mouse release store tangent and inverse tangent into separate vectors
Tangents.push_back(Tangent);
inverseTangents.push_back(inverseTangent);
}
}
}
void passiveMotion(int x, int y)
{
// Sets the location of cursor while moving with no buttons pressed
cursorLocationLive.setxy(x, SCREEN_HEIGHT - y);
}
void motion(int x, int y)
{
// Sets the coordinates of the tangents when mouse moves with a button held down
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
}
void myDisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
// Draw main points in red
glColor3f(255, 0, 0);
for (int i = 0; i < Points.size(); i++)
{
drawDot(Points[i]);
}
// If there is a starting point draw a line to cursor from last drawn point in passive motion
if (Points.size() > 0)
{
glColor3f(0, 0, 0);
drawLine(Points[Points.size() - 1], cursorLocationLive);
}
// Draw live tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangent);
drawDot(inverseTangent);
// Draw live tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangent, inverseTangent);
for (int i = 0; i < Tangents.size(); i++)
{
// Draw stored tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangents[i]);
drawDot(inverseTangents[i]);
// Draw stored tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangents[i], inverseTangents[i]);
}
// Loop through all points
if (Points.size() >= 2)
{
// p1 is the start of the curve set to second last point
Point p1;
p1 = Points[Points.size() - 2];
float i;
// Calculate curve coordinates
for (float j = 0; j <= 100; j++)
{
i = j / 100;
// The Green Lines
float xa = interpolate(Points[Points.size() - 2].x, Tangents[TangentsSize - 2].x, i);
float ya = interpolate(Points[Points.size() - 2].y, Tangents[TangentsSize - 2].y, i);
float xb = interpolate(Tangents[TangentsSize - 2].x, inverseTangent.x, i);
float yb = interpolate(Tangents[TangentsSize - 2].y, inverseTangent.y, i);
float xc = interpolate(inverseTangent.x, Points[Points.size() - 1].x, i);
float yc = interpolate(inverseTangent.y, Points[Points.size() - 1].y, i);
// The Blue Line
float xm = interpolate(xa, xb, i);
float ym = interpolate(ya, yb, i);
float xn = interpolate(xb, xc, i);
float yn = interpolate(yb, yc, i);
// The Black Dot
float x2 = interpolate(xm, xn, i);
float y2 = interpolate(ym, yn, i);
Point p2;
p2.setxy(x2, y2);
drawLine(p1, p2);
p1 = p2;
// Prevents curves generated during mouse motion from being stored
if (PrevMouse == 0 && MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
}
}
std::cout << BezierCurve.size() << std::endl;
PrevMouse = MouseReleased;
// Draw all bezier curvature
for (int i = 1; i < BezierCurve.size(); i++)
{
drawLine(BezierCurve[i - 1], BezierCurve[i]);
}
glutSwapBuffers();
}
void timer(int)
{
glutTimerFunc(1000 / 60, timer, 0);
glutPostRedisplay();
}
int main(int argc, char* argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(640, 500);
glutInitWindowPosition(100, 150);
glutCreateWindow("Bezier Curve");
glutDisplayFunc(myDisplay);
glutIdleFunc(myDisplay);
glutTimerFunc(0, timer, 0);
glutMouseFunc(myMouse);
glutPassiveMotionFunc(passiveMotion);
glutMotionFunc(motion);
glClearColor(255, 255, 255, 0.0);
glPointSize(3);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 500.0);
glutMainLoop();
return 0;
}
我构建了一个贝塞尔曲线工具,每次计算每个曲线段的坐标时,它们都存储在一个向量中。每一帧我都一遍又一遍地在上面添加整条曲线的点。也就是说,第 1 帧可能有 { p1, p2, p3 },然后第 2 帧可能有 { p1, p2, p3, p1, p2, p3 } 等等。当渲染函数末尾的循环在点 p3 和 p1 之间绘制线时,这将导致线自行回环。我正在努力寻找应该在哪里以及如何清除帧之间的 BezierCurve 矢量。在glClear()
之后或glSwapBuffers()
之前清空,只显示之前绘制的曲线段,点与点之间有一条直线。
我基本上希望点之间的直线消失,我知道为什么会这样。我的代码如下:
#include <iostream>
#include <stdlib.h>
#include <GL/glut.h>
#include <vector>
#include <math.h>
using namespace std;
//Point class for taking the points
class Point {
public:
float x, y;
void setxy(float x2, float y2)
{
x = x2; y = y2;
}
//operator overloading for '=' sign
const Point& operator=(const Point& rPoint)
{
x = rPoint.x;
y = rPoint.y;
return *this;
}
};
int SCREEN_HEIGHT = 500;
vector<Point> Points;
Point Tangent;
Point inverseTangent;
Point cursorLocationLive;
int TangentsSize = 0;
vector<Point> Tangents(TangentsSize);
vector<Point> inverseTangents(TangentsSize);
vector<Point> BezierCurve;
bool MouseReleased = false;
void drawDot(Point p1)
{
glBegin(GL_POINTS);
glVertex2i(p1.x, p1.y);
glEnd();
}
void drawLine(Point p1, Point p2)
{
glBegin(GL_LINE_STRIP);
glVertex2f(p1.x, p1.y);
glVertex2f(p2.x, p2.y);
glEnd();
}
float interpolate(float n1, float n2, float perc)
{
float diff = n2 - n1;
return n1 + (diff * perc);
}
void myMouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON)
{
if (state == GLUT_DOWN)
{
MouseReleased = false;
// Store points into Points vector on click
Point point;
point.setxy(x, SCREEN_HEIGHT - y);
Points.push_back(point);
// Tangents are set to the cursor position
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
/*Add new element to Tangent & inverseTangent so when we draw the curve
the tangents are accessed at the right index*/
TangentsSize++;
}
else if (state == GLUT_UP)
{
MouseReleased = true;
// Upon mouse release store tangent and inverse tangent into separate vectors
Tangents.push_back(Tangent);
inverseTangents.push_back(inverseTangent);
}
}
}
void passiveMotion(int x, int y)
{
// Sets the location of cursor while moving with no buttons pressed
cursorLocationLive.setxy(x, SCREEN_HEIGHT - y);
}
void motion(int x, int y)
{
// Sets the coordinates of the tangents when mouse moves with a button held down
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
}
void myDisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
// Draw main points in red
glColor3f(255, 0, 0);
for (int i = 0; i < Points.size(); i++)
{
drawDot(Points[i]);
}
// If there is a starting point draw a line to cursor from last drawn point in passive motion
if (Points.size() > 0)
{
glColor3f(0, 0, 0);
drawLine(Points[Points.size() - 1], cursorLocationLive);
}
// Draw live tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangent);
drawDot(inverseTangent);
// Draw live tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangent, inverseTangent);
for (int i = 0; i < Tangents.size(); i++)
{
// Draw stored tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangents[i]);
drawDot(inverseTangents[i]);
// Draw stored tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangents[i], inverseTangents[i]);
}
// Loop through all points
for (int i = 0; i < Points.size(); i++)
{
// If there are two points draw the first segment
if (Points.size() == 2)
{
// p1 is the start of the curve set at first point
Point p1;
p1 = Points[0];
float i;
// Calculate curve coordinates
for (float j = 0; j <= 100; j++)
{
i = j / 100;
// The Green Lines
float xa = interpolate(Points[0].x, inverseTangents[0].x, i);
float ya = interpolate(Points[0].y, inverseTangents[0].y, i);
float xb = interpolate(inverseTangents[0].x, inverseTangent.x, i);
float yb = interpolate(inverseTangents[0].y, inverseTangent.y, i);
float xc = interpolate(inverseTangent.x, Points[1].x, i);
float yc = interpolate(inverseTangent.y, Points[1].y, i);
// The Blue Line
float xm = interpolate(xa, xb, i);
float ym = interpolate(ya, yb, i);
float xn = interpolate(xb, xc, i);
float yn = interpolate(yb, yc, i);
// The Black Dot
float x2 = interpolate(xm, xn, i);
float y2 = interpolate(ym, yn, i);
Point p2;
p2.setxy(x2, y2);
drawLine(p1, p2);
p1 = p2;
// Prevents curves generated during mouse motion from being stored
if (MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
}
}
// Second segment onwards
else if (Points.size() > 2)
{
// p1 is the start of the curve set to second last point
Point p1;
p1 = Points[Points.size() - 2];
float i;
// Calculate curve coordinates
for (float j = 0; j <= 100; j++)
{
i = j / 100;
// The Green Lines
float xa = interpolate(Points[Points.size() - 2].x, Tangents[TangentsSize - 2].x, i);
float ya = interpolate(Points[Points.size() - 2].y, Tangents[TangentsSize - 2].y, i);
float xb = interpolate(Tangents[TangentsSize - 2].x, inverseTangent.x, i);
float yb = interpolate(Tangents[TangentsSize - 2].y, inverseTangent.y, i);
float xc = interpolate(inverseTangent.x, Points[Points.size() - 1].x, i);
float yc = interpolate(inverseTangent.y, Points[Points.size() - 1].y, i);
// The Blue Line
float xm = interpolate(xa, xb, i);
float ym = interpolate(ya, yb, i);
float xn = interpolate(xb, xc, i);
float yn = interpolate(yb, yc, i);
// The Black Dot
float x2 = interpolate(xm, xn, i);
float y2 = interpolate(ym, yn, i);
Point p2;
p2.setxy(x2, y2);
drawLine(p1, p2);
p1 = p2;
// Prevents curves generated during mouse motion from being stored
if (MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
}
}
}
// Draw all bezier curvature
for (int i = 1; i < BezierCurve.size(); i++)
{
drawLine(BezierCurve[i - 1], BezierCurve[i]);
}
glutSwapBuffers();
}
void timer(int)
{
glutTimerFunc(1000 / 60, timer, 0);
glutPostRedisplay();
}
int main(int argc, char* argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(640, 500);
glutInitWindowPosition(100, 150);
glutCreateWindow("Bezier Curve");
glutDisplayFunc(myDisplay);
glutIdleFunc(myDisplay);
glutTimerFunc(0, timer, 0);
glutMouseFunc(myMouse);
glutPassiveMotionFunc(passiveMotion);
glutMotionFunc(motion);
glClearColor(255, 255, 255, 0.0);
glPointSize(3);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 500.0);
glutMainLoop();
return 0;
}
您需要检测鼠标点击何时从向下变为向上:
bool prevMouse;
...
// at the end of Display()
prevMouse = MouseReleased;
然后我们检查鼠标点击何时从按下变为释放并添加行 BezierCurve
:
if (PrevMouse == 0 && MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
for 循环中的两个代码路径,if (Points.size() == 2)
和 else if (Points.size() > 2)
可以简化为 if (Points.size() >= 2)
,就此而言,for 循环是无关紧要的,我们不需要要更新之前任何点的贝塞尔曲线,只需更新两个最新点 Points[Points.size() - 2]
和 Points[Points.size() - 1]
.
最终代码:
#include <iostream>
#include <stdlib.h>
#include <GL/glut.h>
#include <vector>
#include <math.h>
using namespace std;
//Point class for taking the points
class Point {
public:
float x, y;
void setxy(float x2, float y2)
{
x = x2; y = y2;
}
//operator overloading for '=' sign
const Point& operator=(const Point& rPoint)
{
x = rPoint.x;
y = rPoint.y;
return *this;
}
};
int SCREEN_HEIGHT = 500;
vector<Point> Points;
Point Tangent;
Point inverseTangent;
Point cursorLocationLive;
int TangentsSize = 0;
vector<Point> Tangents(TangentsSize);
vector<Point> inverseTangents(TangentsSize);
vector<Point> BezierCurve;
bool MouseReleased = false;
bool PrevMouse = false;
void drawDot(Point p1)
{
glBegin(GL_POINTS);
glVertex2i(p1.x, p1.y);
glEnd();
}
void drawLine(Point p1, Point p2)
{
glBegin(GL_LINE_STRIP);
glVertex2f(p1.x, p1.y);
glVertex2f(p2.x, p2.y);
glEnd();
}
float interpolate(float n1, float n2, float perc)
{
float diff = n2 - n1;
return n1 + (diff * perc);
}
void myMouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON)
{
if (state == GLUT_DOWN)
{
MouseReleased = false;
// Store points into Points vector on click
Point point;
point.setxy(x, SCREEN_HEIGHT - y);
Points.push_back(point);
// Tangents are set to the cursor position
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
/*Add new element to Tangent & inverseTangent so when we draw the curve
the tangents are accessed at the right index*/
TangentsSize++;
}
else if (state == GLUT_UP)
{
MouseReleased = true;
// Upon mouse release store tangent and inverse tangent into separate vectors
Tangents.push_back(Tangent);
inverseTangents.push_back(inverseTangent);
}
}
}
void passiveMotion(int x, int y)
{
// Sets the location of cursor while moving with no buttons pressed
cursorLocationLive.setxy(x, SCREEN_HEIGHT - y);
}
void motion(int x, int y)
{
// Sets the coordinates of the tangents when mouse moves with a button held down
Tangent.setxy(x, SCREEN_HEIGHT - y);
inverseTangent.x = (2 * Points[Points.size() - 1].x) - Tangent.x;
inverseTangent.y = (2 * Points[Points.size() - 1].y) - Tangent.y;
}
void myDisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
// Draw main points in red
glColor3f(255, 0, 0);
for (int i = 0; i < Points.size(); i++)
{
drawDot(Points[i]);
}
// If there is a starting point draw a line to cursor from last drawn point in passive motion
if (Points.size() > 0)
{
glColor3f(0, 0, 0);
drawLine(Points[Points.size() - 1], cursorLocationLive);
}
// Draw live tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangent);
drawDot(inverseTangent);
// Draw live tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangent, inverseTangent);
for (int i = 0; i < Tangents.size(); i++)
{
// Draw stored tangent dots in green
glColor3f(0, 255, 0);
drawDot(Tangents[i]);
drawDot(inverseTangents[i]);
// Draw stored tangent lines in blue
glColor3f(0, 0, 255);
drawLine(Tangents[i], inverseTangents[i]);
}
// Loop through all points
if (Points.size() >= 2)
{
// p1 is the start of the curve set to second last point
Point p1;
p1 = Points[Points.size() - 2];
float i;
// Calculate curve coordinates
for (float j = 0; j <= 100; j++)
{
i = j / 100;
// The Green Lines
float xa = interpolate(Points[Points.size() - 2].x, Tangents[TangentsSize - 2].x, i);
float ya = interpolate(Points[Points.size() - 2].y, Tangents[TangentsSize - 2].y, i);
float xb = interpolate(Tangents[TangentsSize - 2].x, inverseTangent.x, i);
float yb = interpolate(Tangents[TangentsSize - 2].y, inverseTangent.y, i);
float xc = interpolate(inverseTangent.x, Points[Points.size() - 1].x, i);
float yc = interpolate(inverseTangent.y, Points[Points.size() - 1].y, i);
// The Blue Line
float xm = interpolate(xa, xb, i);
float ym = interpolate(ya, yb, i);
float xn = interpolate(xb, xc, i);
float yn = interpolate(yb, yc, i);
// The Black Dot
float x2 = interpolate(xm, xn, i);
float y2 = interpolate(ym, yn, i);
Point p2;
p2.setxy(x2, y2);
drawLine(p1, p2);
p1 = p2;
// Prevents curves generated during mouse motion from being stored
if (PrevMouse == 0 && MouseReleased)
{
// Store curvature into Bezier Points
BezierCurve.push_back(p2);
}
}
}
std::cout << BezierCurve.size() << std::endl;
PrevMouse = MouseReleased;
// Draw all bezier curvature
for (int i = 1; i < BezierCurve.size(); i++)
{
drawLine(BezierCurve[i - 1], BezierCurve[i]);
}
glutSwapBuffers();
}
void timer(int)
{
glutTimerFunc(1000 / 60, timer, 0);
glutPostRedisplay();
}
int main(int argc, char* argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(640, 500);
glutInitWindowPosition(100, 150);
glutCreateWindow("Bezier Curve");
glutDisplayFunc(myDisplay);
glutIdleFunc(myDisplay);
glutTimerFunc(0, timer, 0);
glutMouseFunc(myMouse);
glutPassiveMotionFunc(passiveMotion);
glutMotionFunc(motion);
glClearColor(255, 255, 255, 0.0);
glPointSize(3);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 500.0);
glutMainLoop();
return 0;
}