pandas 一步一步依次填写
pandas fillna sequentially step by step
我有如下数据框
Re_MC,Fi_MC,Fin_id,Res_id,
1,2,3,4
,7,6,11
11,,31,32
,,35,38
df1 = pd.read_clipboard(sep=',')
我想fillna
基于两个步骤
a) 首先,只比较 Re_MC
和 Fi_MC
。如果其中任一列中缺少某个值,请从另一列中复制它。
b) 尽管执行了步骤 a,如果 Re_MC
或 Fi_MC
仍然存在 NA,则从 Fin_id
复制 Fi_MC
和 [=22= 的值] 对于 Re_MC
.
所以,我尝试了以下两种方法
方法 1 - 这有效但无效 efficient/elegant
df1['Re_MC'] = df1['Re_MC'].fillna(df1['Fi_MC'])
df1['Fi_MC'] = df1['Fi_MC'].fillna(df1['Re_MC'])
df1['Re_MC'] = df1['Re_MC'].fillna(df1['Res_id'])
df1['Fi_MC'] = df1['Fi_MC'].fillna(df1['Fin_id'])
方法 2 - 这不起作用并提供不正确的输出
df1['Re_MC'] = df1['Re_MC'].fillna(df1['Fi_MC']).fillna(df1['Res_id'])
df1['Fi_MC'] = df1['Fi_MC'].fillna(df1['Re_MC']).fillna(df1['Fin_id'])
有没有其他有效的方法来按顺序填写na?意思是,我们先做 step a
然后根据 step a
的结果,我们做 step b
我希望我的输出如下所示
更新代码
df_new = (df_new
.fillna({'Re MC': df_new['Re Cust'],'Re MC': df_new['Re Cust_System']})
.fillna({'Fi MC' : df_new['Fi.Fi Customer'],'Final MC':df_new['Re.Fi Customer']})
.fillna({'Fi MC' : df_new['Re MC']})
.fillna({'Class Fi MC':df_new['Re MC']})
)
您可以在fillna
中使用字典:
(df1
.fillna({'Re_MC': df1['Fi_MC'], 'Fi_MC': df1['Re_MC']})
.fillna({'Re_MC': df1['Res_id'], 'Fi_MC': df1['Fin_id']})
)
输出:
Re_MC Fi_MC Fin_id Res_id
0 1.0 2.0 3 4
1 7.0 7.0 6 11
2 11.0 11.0 31 32
3 38.0 35.0 35 38
我有如下数据框
Re_MC,Fi_MC,Fin_id,Res_id,
1,2,3,4
,7,6,11
11,,31,32
,,35,38
df1 = pd.read_clipboard(sep=',')
我想fillna
基于两个步骤
a) 首先,只比较 Re_MC
和 Fi_MC
。如果其中任一列中缺少某个值,请从另一列中复制它。
b) 尽管执行了步骤 a,如果 Re_MC
或 Fi_MC
仍然存在 NA,则从 Fin_id
复制 Fi_MC
和 [=22= 的值] 对于 Re_MC
.
所以,我尝试了以下两种方法
方法 1 - 这有效但无效 efficient/elegant
df1['Re_MC'] = df1['Re_MC'].fillna(df1['Fi_MC'])
df1['Fi_MC'] = df1['Fi_MC'].fillna(df1['Re_MC'])
df1['Re_MC'] = df1['Re_MC'].fillna(df1['Res_id'])
df1['Fi_MC'] = df1['Fi_MC'].fillna(df1['Fin_id'])
方法 2 - 这不起作用并提供不正确的输出
df1['Re_MC'] = df1['Re_MC'].fillna(df1['Fi_MC']).fillna(df1['Res_id'])
df1['Fi_MC'] = df1['Fi_MC'].fillna(df1['Re_MC']).fillna(df1['Fin_id'])
有没有其他有效的方法来按顺序填写na?意思是,我们先做 step a
然后根据 step a
的结果,我们做 step b
我希望我的输出如下所示
更新代码
df_new = (df_new
.fillna({'Re MC': df_new['Re Cust'],'Re MC': df_new['Re Cust_System']})
.fillna({'Fi MC' : df_new['Fi.Fi Customer'],'Final MC':df_new['Re.Fi Customer']})
.fillna({'Fi MC' : df_new['Re MC']})
.fillna({'Class Fi MC':df_new['Re MC']})
)
您可以在fillna
中使用字典:
(df1
.fillna({'Re_MC': df1['Fi_MC'], 'Fi_MC': df1['Re_MC']})
.fillna({'Re_MC': df1['Res_id'], 'Fi_MC': df1['Fin_id']})
)
输出:
Re_MC Fi_MC Fin_id Res_id
0 1.0 2.0 3 4
1 7.0 7.0 6 11
2 11.0 11.0 31 32
3 38.0 35.0 35 38