如何使此功能动态化?函数
How to make this function dynamic? R function
我在 R 中有一个函数,它生成一个 table 从数据帧中选取数据的图形,每次我想传递一个不同的变量(数据帧中的列名)时,我都必须重复代码。所以有时它可以是变量,有时是变量b,有时是变量c...等等
generates_table_variablea <- function(data) { ## how to pass the column = variablea here like this
####### function(data, column = variablea) .. ???
big_data <- data %>%
group_by(a, b, c, d) %>%
mutate(total_categoria_abs = sum(abs(f))) %>%
mutate(volume_negativo = if_else(variablea < 0, f, 0)) %>%
mutate(volume_positivo = if_else(variablea > 0, f, 0)) %>%
mutate(total = sum(volume_positivo) - sum(volume_negativo)) %>%
mutate(e = if_else(variablea < 0, sum(variablea), 0)) %>%
ungroup() %>%
filter (variablea < 0) %>%
group_by(a, b, c, d) %>%
summarise(e = mean(e), vendas = sum(f*-1), frac_vendas = vendas*-1/mean(total_categoria_abs)) %>%
arrange(e) %>%
ungroup()
big_data$frac_vendas <- round(big_data$frac_vendas, digits = 2)
big_data$e <- round(big_data$e, digits = 0)
}
如果我想更改这个变量,我必须执行以下操作:
generates_table_variableb <- function(data) { ## HERE IT WILL BE function(data, column = variableb)...
big_data <- data %>%
group_by(a, b, c, d) %>%
mutate(total_categoria_abs = sum(abs(f))) %>%
mutate(volume_negativo = if_else(variableb < 0, f, 0)) %>% #### HERE I NEED TO CHANGE ALWAYS TO VARIABLEA, VARIABLEB, VARIABLEC...
mutate(volume_positivo = if_else(variableb > 0, f, 0)) %>%
mutate(total = sum(volume_positivo) - sum(volume_negativo)) %>%
mutate(e = if_else(variablea < 0, sum(variableb), 0)) %>%
ungroup() %>%
filter (variableb < 0) %>%
group_by(a, b, c, d) %>%
summarise(e = mean(e), vendas = sum(f*-1), frac_vendas = vendas*-1/mean(total_categoria_abs)) %>%
arrange(e) %>%
ungroup()
big_data$frac_vendas <- round(big_data$frac_vendas, digits = 2)
big_data$e <- round(big_data$e, digits = 0)
}
让多个函数做同样的事情会减慢我的代码...
这怎么可能更好?我想要的只是动态传递此列。
这是其中一种方式
library(dplyr)
x <- data.frame(v1=1:3, v2=4:6)
f <- function(data, var1){
x %>% select(!!var1)
}
f(x, quo(v1))
中查看更多解释
我找到了另一个同样有效的方法:
generates_table_variablea <- function(dataframe, variable) { ## Here pass variable
big_data <- dataframe %>%
group_by(a, b, c, d) %>%
mutate(total_categoria_abs = sum(abs(f))) %>%
mutate(volume_negativo = if_else(.data[[variable]] < 0, f, 0)) %>%
mutate(volume_positivo = if_else(.data[[variable]] > 0, f, 0)) %>%
mutate(total = sum(volume_positivo) - sum(volume_negativo)) %>%
mutate(e = if_else(.data[[variable]] < 0, sum(variablea), 0)) %>%
ungroup() %>%
filter (.data[[variable]] < 0) %>%
group_by(a, b, c, d) %>%
summarise(e = mean(e), vendas = sum(f*-1), frac_vendas = vendas*-1/mean(total_categoria_abs)) %>%
arrange(e) %>%
ungroup()
big_data$frac_vendas <- round(big_data$frac_vendas, digits = 2)
big_data$e <- round(big_data$e, digits = 0)
}
只需将变量替换为.data[[variable]]即可在函数内部传递任何列。
我在 R 中有一个函数,它生成一个 table 从数据帧中选取数据的图形,每次我想传递一个不同的变量(数据帧中的列名)时,我都必须重复代码。所以有时它可以是变量,有时是变量b,有时是变量c...等等
generates_table_variablea <- function(data) { ## how to pass the column = variablea here like this
####### function(data, column = variablea) .. ???
big_data <- data %>%
group_by(a, b, c, d) %>%
mutate(total_categoria_abs = sum(abs(f))) %>%
mutate(volume_negativo = if_else(variablea < 0, f, 0)) %>%
mutate(volume_positivo = if_else(variablea > 0, f, 0)) %>%
mutate(total = sum(volume_positivo) - sum(volume_negativo)) %>%
mutate(e = if_else(variablea < 0, sum(variablea), 0)) %>%
ungroup() %>%
filter (variablea < 0) %>%
group_by(a, b, c, d) %>%
summarise(e = mean(e), vendas = sum(f*-1), frac_vendas = vendas*-1/mean(total_categoria_abs)) %>%
arrange(e) %>%
ungroup()
big_data$frac_vendas <- round(big_data$frac_vendas, digits = 2)
big_data$e <- round(big_data$e, digits = 0)
}
如果我想更改这个变量,我必须执行以下操作:
generates_table_variableb <- function(data) { ## HERE IT WILL BE function(data, column = variableb)...
big_data <- data %>%
group_by(a, b, c, d) %>%
mutate(total_categoria_abs = sum(abs(f))) %>%
mutate(volume_negativo = if_else(variableb < 0, f, 0)) %>% #### HERE I NEED TO CHANGE ALWAYS TO VARIABLEA, VARIABLEB, VARIABLEC...
mutate(volume_positivo = if_else(variableb > 0, f, 0)) %>%
mutate(total = sum(volume_positivo) - sum(volume_negativo)) %>%
mutate(e = if_else(variablea < 0, sum(variableb), 0)) %>%
ungroup() %>%
filter (variableb < 0) %>%
group_by(a, b, c, d) %>%
summarise(e = mean(e), vendas = sum(f*-1), frac_vendas = vendas*-1/mean(total_categoria_abs)) %>%
arrange(e) %>%
ungroup()
big_data$frac_vendas <- round(big_data$frac_vendas, digits = 2)
big_data$e <- round(big_data$e, digits = 0)
}
让多个函数做同样的事情会减慢我的代码...
这怎么可能更好?我想要的只是动态传递此列。
这是其中一种方式
library(dplyr)
x <- data.frame(v1=1:3, v2=4:6)
f <- function(data, var1){
x %>% select(!!var1)
}
f(x, quo(v1))
中查看更多解释
我找到了另一个同样有效的方法:
generates_table_variablea <- function(dataframe, variable) { ## Here pass variable
big_data <- dataframe %>%
group_by(a, b, c, d) %>%
mutate(total_categoria_abs = sum(abs(f))) %>%
mutate(volume_negativo = if_else(.data[[variable]] < 0, f, 0)) %>%
mutate(volume_positivo = if_else(.data[[variable]] > 0, f, 0)) %>%
mutate(total = sum(volume_positivo) - sum(volume_negativo)) %>%
mutate(e = if_else(.data[[variable]] < 0, sum(variablea), 0)) %>%
ungroup() %>%
filter (.data[[variable]] < 0) %>%
group_by(a, b, c, d) %>%
summarise(e = mean(e), vendas = sum(f*-1), frac_vendas = vendas*-1/mean(total_categoria_abs)) %>%
arrange(e) %>%
ungroup()
big_data$frac_vendas <- round(big_data$frac_vendas, digits = 2)
big_data$e <- round(big_data$e, digits = 0)
}
只需将变量替换为.data[[variable]]即可在函数内部传递任何列。