将 Dataframe Multiindex 级别 1 除以级别 0 的总和
Divide Dataframe Multiindex level 1 by the sum of level 0
我创建了一个这样的 DataFrame:
df = pd.DataFrame(
{
'env': ['us', 'us', 'us', 'eu'],
'name': ['first', 'first', 'first', 'second'],
'default_version': ['2.0.1','2.0.1','2.0.1', '2.1.1'],
'version': ['2.2.1', '2.2.2.4', '2.3', '2.2.24'],
'count_events': [1, 8, 102, 244],
'unique_users': [1, 3, 72, 111]
}
)
df = df.pivot_table(index=['env', 'name', 'default_version'], \
columns='version', values=['count_events', 'unique_users'], aggfunc=np.sum)
接下来我要查找的是在 level=1 处查找所有 count_events 的总和以及在 level=1 处查找所有 unique_users 的总和,因此我可以找到 [=20= 的百分比] 和每个版本中的 unique_users。
我已经用下面的代码生成了总和,但我不知道如何生成 %。
sums = df.sum(level=0, axis=1)
sums.columns = pd.MultiIndex.from_product([sums.columns, ['SUM']])
final_result = pd.concat([df, sums], axis=1)
如有必要,更改和代码不会有问题。
的组合重新索引总和以匹配原始数据的形状
In [14]: fraction = (
...: df / (
...: sums
...: .reindex(df.columns.get_level_values(0), axis=1)
...: .set_axis(df.columns, axis=1)
...: )
...: ).fillna(0)
In [15]: fraction
Out[15]:
count_events unique_users
version 2.2.1 2.2.2.4 2.2.24 2.3 2.2.1 2.2.2.4 2.2.24 2.3
env name default_version
eu second 2.1.1 0.000000 0.000000 1.0 0.000000 0.000000 0.000000 1.0 0.000000
us first 2.0.1 0.009009 0.072072 0.0 0.918919 0.013158 0.039474 0.0 0.947368
我创建了一个这样的 DataFrame:
df = pd.DataFrame(
{
'env': ['us', 'us', 'us', 'eu'],
'name': ['first', 'first', 'first', 'second'],
'default_version': ['2.0.1','2.0.1','2.0.1', '2.1.1'],
'version': ['2.2.1', '2.2.2.4', '2.3', '2.2.24'],
'count_events': [1, 8, 102, 244],
'unique_users': [1, 3, 72, 111]
}
)
df = df.pivot_table(index=['env', 'name', 'default_version'], \
columns='version', values=['count_events', 'unique_users'], aggfunc=np.sum)
接下来我要查找的是在 level=1 处查找所有 count_events 的总和以及在 level=1 处查找所有 unique_users 的总和,因此我可以找到 [=20= 的百分比] 和每个版本中的 unique_users。
我已经用下面的代码生成了总和,但我不知道如何生成 %。
sums = df.sum(level=0, axis=1)
sums.columns = pd.MultiIndex.from_product([sums.columns, ['SUM']])
final_result = pd.concat([df, sums], axis=1)
如有必要,更改和代码不会有问题。
In [14]: fraction = (
...: df / (
...: sums
...: .reindex(df.columns.get_level_values(0), axis=1)
...: .set_axis(df.columns, axis=1)
...: )
...: ).fillna(0)
In [15]: fraction
Out[15]:
count_events unique_users
version 2.2.1 2.2.2.4 2.2.24 2.3 2.2.1 2.2.2.4 2.2.24 2.3
env name default_version
eu second 2.1.1 0.000000 0.000000 1.0 0.000000 0.000000 0.000000 1.0 0.000000
us first 2.0.1 0.009009 0.072072 0.0 0.918919 0.013158 0.039474 0.0 0.947368