PyTorch ConvNet 不工作。损失下降,因为准确率保持在 %14 左右
PyTorch ConvNet not working. Loss goes down as accuracy stays about %14
我正在尝试学习 pytorch,这是我的第一个卷积网络。但是模型不是在训练。损失在每个时期都在下降,但准确率在 10-20% 之间波动。我想知道我做错了什么来提升自己。
这是数据加载部分
training_data = datasets.MNIST(
root="data",
train=True,
download=True,
transform=transforms.ToTensor(),
target_transform=transforms.Lambda(lambda y: torch.zeros(10,dtype=torch.float).scatter_(0,torch.tensor(y),value=1))
)
test_data = datasets.MNIST(
root="data",
train=False,
download=True,
transform=transforms.ToTensor(),
target_transform=transforms.Lambda(lambda y: torch.zeros(10,dtype=torch.float).scatter_(0,torch.tensor(y),value=1))
)
train_dataloader = DataLoader(training_data,batch_size=64,shuffle=True)
test_dataloader = DataLoader(test_data,batch_size=64,shuffle=True)
这是我的模型
from torch.nn.modules.pooling import MaxPool2d
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.CNN_stack = nn.Sequential(
nn.ReflectionPad2d((1,0,1,0)),
nn.Conv2d(in_channels=1,out_channels=5,kernel_size=5,stride=2),
nn.ReLU(),
nn.Conv2d(in_channels=5,out_channels=50,kernel_size=5,stride=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(1250,100),
nn.ReLU(),
nn.Linear(100,10)
)
def forward(self,x):
logits = self.CNN_stack(x)
return logits
model = CNN().to(device)
这些是我的传播循环
def train_loop(batch,X,y,model,loss_fn,optimizer):
size = 60000
#Forward Prop
pred = model(X)
loss = loss_fn(pred,y)
#Backward Prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X,y=X.to(device),y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(0) == y).type(torch.float).sum().item()
#print(f"{pred[0].argmax(0)}={y[0]}")
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
for batch, (X,y) in enumerate(train_dataloader):
X,y = X.to(device), y.to(device)
train_loop(batch,X, y , model, loss_fn, optimizer)
test_loop(test_dataloader , model, loss_fn)
print("Done!")
您的准确度计算不正确:
- 在
pred
端使用 argmax(1)
;
- 在
y
旁边注意 y 是 one-hot 编码的,所以在那里使用 argmax
或其他东西。
这会起作用:
correct += (pred.argmax(1) == y.argmax(1)).sum().item()
也使用更高的学习率,例如 0.01 以实现更快的学习。
通过这些更改,您的净收益率在 10 个时期后准确度==97.6%。
我正在尝试学习 pytorch,这是我的第一个卷积网络。但是模型不是在训练。损失在每个时期都在下降,但准确率在 10-20% 之间波动。我想知道我做错了什么来提升自己。
这是数据加载部分
training_data = datasets.MNIST(
root="data",
train=True,
download=True,
transform=transforms.ToTensor(),
target_transform=transforms.Lambda(lambda y: torch.zeros(10,dtype=torch.float).scatter_(0,torch.tensor(y),value=1))
)
test_data = datasets.MNIST(
root="data",
train=False,
download=True,
transform=transforms.ToTensor(),
target_transform=transforms.Lambda(lambda y: torch.zeros(10,dtype=torch.float).scatter_(0,torch.tensor(y),value=1))
)
train_dataloader = DataLoader(training_data,batch_size=64,shuffle=True)
test_dataloader = DataLoader(test_data,batch_size=64,shuffle=True)
这是我的模型
from torch.nn.modules.pooling import MaxPool2d
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.CNN_stack = nn.Sequential(
nn.ReflectionPad2d((1,0,1,0)),
nn.Conv2d(in_channels=1,out_channels=5,kernel_size=5,stride=2),
nn.ReLU(),
nn.Conv2d(in_channels=5,out_channels=50,kernel_size=5,stride=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(1250,100),
nn.ReLU(),
nn.Linear(100,10)
)
def forward(self,x):
logits = self.CNN_stack(x)
return logits
model = CNN().to(device)
这些是我的传播循环
def train_loop(batch,X,y,model,loss_fn,optimizer):
size = 60000
#Forward Prop
pred = model(X)
loss = loss_fn(pred,y)
#Backward Prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X,y=X.to(device),y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(0) == y).type(torch.float).sum().item()
#print(f"{pred[0].argmax(0)}={y[0]}")
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
for batch, (X,y) in enumerate(train_dataloader):
X,y = X.to(device), y.to(device)
train_loop(batch,X, y , model, loss_fn, optimizer)
test_loop(test_dataloader , model, loss_fn)
print("Done!")
您的准确度计算不正确:
- 在
pred
端使用argmax(1)
; - 在
y
旁边注意 y 是 one-hot 编码的,所以在那里使用argmax
或其他东西。
这会起作用:
correct += (pred.argmax(1) == y.argmax(1)).sum().item()
也使用更高的学习率,例如 0.01 以实现更快的学习。
通过这些更改,您的净收益率在 10 个时期后准确度==97.6%。