pandas 中的多个嵌套 groupby
multiple nested groupby in pandas
这是我的 pandas 数据框:
df = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-12',6: '2016-10-12',7: '2016-10-12',8: '2016-10-12',9: '2016-10-12'}, 'Stock': {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',8: 'I', 9:'J'}, 'Sector': {0: 0,1: 0, 2: 1, 3: 1, 4: 1, 5: 0, 6:0, 7:0, 8:1, 9:1}, 'Segment': {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6:2,7:2,8:3,9:3}, 'Range': {0: 5, 1: 0, 2: 1, 3: 0, 4: 2, 5: 6, 6:0, 7:23, 8:5, 9:5}})
外观如下:
我要添加以下列:
- 'Date_Range_Avg':按日期
分组的 'Range' 的平均值
- 'Date_Sector_Range_Avg':按日期和部门
分组的 'Range' 的平均值
- 'Date_Segment_Range_Avg':按日期和细分
分组的 'Range' 的平均值
这将是输出:
res = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-12',6: '2016-10-12',7: '2016-10-12',8: '2016-10-12',9: '2016-10-12'}, 'Stock': {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',8: 'I', 9:'J'}, 'Sector': {0: 0,1: 0, 2: 1, 3: 1, 4: 1, 5: 0, 6:0, 7:0, 8:1, 9:1}, 'Segment': {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6:2,7:2,8:3,9:3}, 'Range': {0: 5, 1: 0, 2: 1, 3: 0, 4: 2, 5: 6, 6:0, 7:23, 8:5, 9:5}, 'Date_Range_Avg':{0: 1.6, 1: 1.6, 2: 1.6, 3: 1.6, 4: 1.6, 5: 7.8, 6: 7.8, 7: 7.8, 8:7.8, 9: 7.8}, 'Date_Sector_Range_Avg':{0: 2.5, 1: 2.5, 2: 1, 3: 1, 4: 1, 5: 9.67, 6: 9.67, 7: 9.67, 8: 9.67, 9: 9.67}, 'Date_Segment_Range_Avg':{0: 5, 1: 0.75, 2: 0.75, 3: 0.75, 4: 0.75, 5: 6, 6: 11.5, 7: 11.5, 8: 5, 9: 5}})
这是它的样子:
请注意,我已经四舍五入了一些值 - 但这种四舍五入对于我的问题来说并不是必需的(请不要四舍五入)
我知道我可以分别进行这些分组,但我觉得效率很低(我的数据集包含数百万行)
基本上,我想先按 Date
进行分组,然后再使用它按 Date and Segment
和 Date and Sector
进行两个更细粒度的分组。
如何操作?
我最初的预感是这样的:
day_groups = df.groupby("Date")
df['Date_Range_Avg'] = day_groups['Range'].transform('mean')
然后重新使用 day_groups
来执行 2 个更细粒度的 groupby,如下所示:
df['Date_Sector_Range_Avg'] = day_groups.groupby('Segment')[Range].transform('mean')
当你得到时,这不起作用:
'AttributeError: 'DataFrameGroupBy' 对象没有属性 'groupby''
groupby
当聚合函数被向量化时运行得非常快。如果您担心性能,请先尝试一下,看看它是否是您程序中真正的瓶颈。
您可以创建临时数据框来保存每个 groupby
的结果,然后 merge
它们 df
:
group_bys = {
"Date_Range_Avg": ["Date"],
"Date_Sector_Range_Avg": ["Date", "Sector"],
"Date_Segment_Range_Avg": ["Date", "Segment"]
}
tmp = [
df.groupby(columns)["Range"].mean().to_frame(key)
for key, columns in group_bys.items()
]
result = df
for t in tmp:
result = result.merge(t, left_on=t.index.names, right_index=True)
结果:
Date Stock Sector Segment Range Date_Range_Avg Date_Sector_Range_Avg Date_Segment_Range_Avg
0 2016-10-11 A 0 0 5 1.6 2.500000 5.00
1 2016-10-11 B 0 1 0 1.6 2.500000 0.75
2 2016-10-11 C 1 1 1 1.6 1.000000 0.75
3 2016-10-11 D 1 1 0 1.6 1.000000 0.75
4 2016-10-11 E 1 1 2 1.6 1.000000 0.75
5 2016-10-12 F 0 1 6 7.8 9.666667 6.00
6 2016-10-12 G 0 2 0 7.8 9.666667 11.50
7 2016-10-12 H 0 2 23 7.8 9.666667 11.50
8 2016-10-12 I 1 3 5 7.8 5.000000 5.00
9 2016-10-12 J 1 3 5 7.8 5.000000 5.00
另一种选择是使用 transform
,避免多次合并:
# reusing your code
group_bys = {
"Date_Range_Avg": ["Date"],
"Date_Sector_Range_Avg": ["Date", "Sector"],
"Date_Segment_Range_Avg": ["Date", "Segment"]
}
tmp = {key : df.groupby(columns)["Range"].transform('mean')
for key, columns in group_bys.items()
}
df.assign(**tmp)
这是我的 pandas 数据框:
df = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-12',6: '2016-10-12',7: '2016-10-12',8: '2016-10-12',9: '2016-10-12'}, 'Stock': {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',8: 'I', 9:'J'}, 'Sector': {0: 0,1: 0, 2: 1, 3: 1, 4: 1, 5: 0, 6:0, 7:0, 8:1, 9:1}, 'Segment': {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6:2,7:2,8:3,9:3}, 'Range': {0: 5, 1: 0, 2: 1, 3: 0, 4: 2, 5: 6, 6:0, 7:23, 8:5, 9:5}})
外观如下:
我要添加以下列:
- 'Date_Range_Avg':按日期 分组的 'Range' 的平均值
- 'Date_Sector_Range_Avg':按日期和部门 分组的 'Range' 的平均值
- 'Date_Segment_Range_Avg':按日期和细分 分组的 'Range' 的平均值
这将是输出:
res = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-12',6: '2016-10-12',7: '2016-10-12',8: '2016-10-12',9: '2016-10-12'}, 'Stock': {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',8: 'I', 9:'J'}, 'Sector': {0: 0,1: 0, 2: 1, 3: 1, 4: 1, 5: 0, 6:0, 7:0, 8:1, 9:1}, 'Segment': {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6:2,7:2,8:3,9:3}, 'Range': {0: 5, 1: 0, 2: 1, 3: 0, 4: 2, 5: 6, 6:0, 7:23, 8:5, 9:5}, 'Date_Range_Avg':{0: 1.6, 1: 1.6, 2: 1.6, 3: 1.6, 4: 1.6, 5: 7.8, 6: 7.8, 7: 7.8, 8:7.8, 9: 7.8}, 'Date_Sector_Range_Avg':{0: 2.5, 1: 2.5, 2: 1, 3: 1, 4: 1, 5: 9.67, 6: 9.67, 7: 9.67, 8: 9.67, 9: 9.67}, 'Date_Segment_Range_Avg':{0: 5, 1: 0.75, 2: 0.75, 3: 0.75, 4: 0.75, 5: 6, 6: 11.5, 7: 11.5, 8: 5, 9: 5}})
这是它的样子:
请注意,我已经四舍五入了一些值 - 但这种四舍五入对于我的问题来说并不是必需的(请不要四舍五入)
我知道我可以分别进行这些分组,但我觉得效率很低(我的数据集包含数百万行)
基本上,我想先按 Date
进行分组,然后再使用它按 Date and Segment
和 Date and Sector
进行两个更细粒度的分组。
如何操作?
我最初的预感是这样的:
day_groups = df.groupby("Date")
df['Date_Range_Avg'] = day_groups['Range'].transform('mean')
然后重新使用 day_groups
来执行 2 个更细粒度的 groupby,如下所示:
df['Date_Sector_Range_Avg'] = day_groups.groupby('Segment')[Range].transform('mean')
当你得到时,这不起作用:
'AttributeError: 'DataFrameGroupBy' 对象没有属性 'groupby''
groupby
当聚合函数被向量化时运行得非常快。如果您担心性能,请先尝试一下,看看它是否是您程序中真正的瓶颈。
您可以创建临时数据框来保存每个 groupby
的结果,然后 merge
它们 df
:
group_bys = {
"Date_Range_Avg": ["Date"],
"Date_Sector_Range_Avg": ["Date", "Sector"],
"Date_Segment_Range_Avg": ["Date", "Segment"]
}
tmp = [
df.groupby(columns)["Range"].mean().to_frame(key)
for key, columns in group_bys.items()
]
result = df
for t in tmp:
result = result.merge(t, left_on=t.index.names, right_index=True)
结果:
Date Stock Sector Segment Range Date_Range_Avg Date_Sector_Range_Avg Date_Segment_Range_Avg
0 2016-10-11 A 0 0 5 1.6 2.500000 5.00
1 2016-10-11 B 0 1 0 1.6 2.500000 0.75
2 2016-10-11 C 1 1 1 1.6 1.000000 0.75
3 2016-10-11 D 1 1 0 1.6 1.000000 0.75
4 2016-10-11 E 1 1 2 1.6 1.000000 0.75
5 2016-10-12 F 0 1 6 7.8 9.666667 6.00
6 2016-10-12 G 0 2 0 7.8 9.666667 11.50
7 2016-10-12 H 0 2 23 7.8 9.666667 11.50
8 2016-10-12 I 1 3 5 7.8 5.000000 5.00
9 2016-10-12 J 1 3 5 7.8 5.000000 5.00
另一种选择是使用 transform
,避免多次合并:
# reusing your code
group_bys = {
"Date_Range_Avg": ["Date"],
"Date_Sector_Range_Avg": ["Date", "Sector"],
"Date_Segment_Range_Avg": ["Date", "Segment"]
}
tmp = {key : df.groupby(columns)["Range"].transform('mean')
for key, columns in group_bys.items()
}
df.assign(**tmp)