在具有多个输入的函数上使用 map() 来摆脱 for 循环
Using map() on a function with multiple inputs to get rid of for loops
上下文:
我有一个函数可以对我想尽可能高效地编写的多个数组进行 ups 采样(因为我必须 运行 它 370000 次)。
此函数接受多个输入,由 2 for
loops 组成。为了 ups 对我的数组进行采样,我使用参数 k
遍历此函数,并且我想摆脱此循环(它位于函数之外)。我尝试混合使用 map()
和 list-comprehension 来最小化我的计算时间,但我无法让它工作。
问题:
如何让我的 map()
部分代码正常工作(请参阅代码的最后一部分 )?有没有比 map()
更好的方法来摆脱 for
loops ?
总结:
- 函数
interpolate_and_get_results
:2 for
厕所ps。将 3D、2D 数组和 int
作为输入
- 此函数 运行 在
for
循环(参数 k
)中,我想摆脱它
我写了一些示例代码,带有 map()
的部分不起作用,因为我想不出一种方法将 k
参数作为 list,还有一个输入.
谢谢!
ps:
import numpy as np
import time
#%% --- SETUP OF THE PROBLEM --- %%#
temperatures = np.random.rand(10,4,7)*100
precipitation = np.random.rand(10,4,7)
snow = np.random.rand(10,4,7)
# Flatten the arrays to make them iterable with map()
temperatures = temperatures.reshape(10,4*7)
precipitation = precipitation.reshape(10,4*7)
snow = snow.reshape(10,4*7)
# Array of altitudes to "adjust" the temperatures
alt = np.random.rand(4,7)*1000
# Flatten the array
alt = alt.reshape(4*7)
# Weight Matrix
w = np.random.rand(4*7, 1000, 1000)
#%% Function
def interpolate_and_get_results(temp, prec, Eprec, w, i, k):
# Do some calculations
factor1 = ((temperatures[i,k]-272.15) + (-alt[k] * -6/1000))
factor2 = precipitation[i,k]
factor3 = snow[i,k]
# Iterate through every cell of the upsampled arrays
for i in range(w.shape[1]):
for j in range(w.shape[2]):
val = w[k, i, j]
temp[i, j] += factor1 * val
prec[i, j] += factor2 * val
Eprec[i, j] += factor3 * val
#%% --- Function call without loop simplification --- ##%
# Prepare a template array
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the global arrays to be filled
tempYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
ts = time.time()
for i in range(temperatures.shape[0]):
# Create empty host arrays
temp = dummy.copy()
prec = dummy.copy()
Eprec = dummy.copy()
for k in range(w.shape[0]):
interpolate_and_get_results(temp, prec, Eprec, w, i, k)
print('Time: ', (time.time()-ts))
#%% --- With Map (DOES NOT WORK) --- %%#
del k
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the global arrays to be filled
tempYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
# Create a list k to be iterated through with the map() function
k = [k for k in range(0, temperatures.shape[1])]
for i in range(temperatures.shape[0]):
# Create empty host arrays
temp = dummy.copy()
prec = dummy.copy()
Eprec = dummy.copy()
# Call the interpolate function with map() iterating through k
map(interpolate_and_get_results(temp, prec, Eprec, w, i, k), k)
@Jérôme Richard 使用 numba
应用户 @ken 的请求添加的代码(在我的电脑上需要 48.81 秒到 运行):
import numpy as np
import multiprocessing as mp
import time
#%% ------ Create data ------ ###
temperatures = np.random.rand(10,4,7)*100
precipitation = np.random.rand(10,4,7)
snow = np.random.rand(10,4,7)
# Array of altitudes to "adjust" the temperatures
alt = np.random.rand(4,7)*1000
#%% ------ IDW Interpolation ------ ###
# We create a weight matrix that we use to upsample our temperatures, precipitations and snow matrices
# This part is not that important, it works well as it is
MX,MY = np.shape(temperatures[0])
N = 300
T = np.zeros([N*MX+1, N*MY+1])
# create NxM inverse distance weight matrices based on Gaussian interpolation
x = np.arange(0,N*MX+1)
y = np.arange(0,N*MY+1)
X,Y = np.meshgrid(x,y)
k = 0
w = np.zeros([MX*MY,N*MX+1,N*MY+1])
for mx in range(MX):
for my in range(MY):
# Gaussian
add_point = np.exp(-((mx*N-X.T)**2+(my*N-Y.T)**2)/N**2)
w[k,:,:] += add_point
k += 1
sum_weights = np.sum(w, axis=0)
for k in range(MX*MY):
w[k,:,:] /= sum_weights
#%% --- Function --- %%#
# Code from Jérôme Richard:
import numba as nb
# get_results + interpolator
@nb.njit('void(float64[:,::1], float64[:,::1], float64[:,::1], float64[:,:,::1], int_, int_, int_, int_)', parallel=True)
def interpolate_and_get_results(temp, prec, Eprec, w, i, k, mx, my):
factor1 = ((temperatures[i,mx,my]-272.15) + (-alt[mx, my] * -6/1000))
factor2 = precipitation[i,mx,my]
factor3 = snow[i,mx,my]
# Filling the
for i in nb.prange(w.shape[1]):
for j in range(w.shape[2]):
val = w[k, i, j]
temp[i, j] += factor1 * val
prec[i, j] += factor2 * val
Eprec[i, j] += factor3 * val
#%% --- Main Loop --- %%#
ts = time.time()
if __name__ == '__main__':
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the permanent arrays to be filled
tempYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
smbYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
# Initialize semi-permanent array
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
# Loop over the "time" axis
for i in range(0, temperatures.shape[0]):
# Create empty semi-permanent arrays
temp = dummy.copy()
prec = dummy.copy()
Eprec = dummy.copy()
# Loop over the different weights
for k in range(w.shape[0]):
# Loops over the cells of the array to be upsampled
for mx in range(MX):
for my in range(MY):
interpolate_and_get_results(temp, prec, Eprec, w, i, k, mx, my)
# At each timestep, update the semi-permanent array using the results from the interpolate function
smb[np.logical_and(temp <= 0, prec > 0)] += prec[np.logical_and(temp <= 0, prec > 0)]
# Fill the permanent arrays (equivalent of storing the results at the end of every year)
# and reinitialize the semi-permanent array every 5th timestep
if i%5 == 0:
# Permanent
tempYEAR[int(i/5)] = temp
precYEAR[int(i/5)] = prec
EprecYEAR[int(i/5)] = Eprec
smbYEAR[int(i/5)] = smb
# Semi-permanent
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
print("Time spent:", time.time()-ts)
注意:这个答案不是关于如何使用地图,而是关于“更好的方法”。
您正在进行大量冗余计算。信不信由你,这段代码输出相同的结果。
# No change in the initialization section above.
ts = time.time()
if __name__ == '__main__':
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the permanent arrays to be filled
tempYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
smbYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
temperatures_inter = temperatures - 272.15
w_inter = w.sum(axis=0)
alt_inter = (alt * (-6 / 1000)).sum()
for i in range(0, temperatures_inter.shape[0]):
temp_i = (temperatures_inter[i].sum() - alt_inter) * w_inter
prec_i = precipitation[i].sum() * w_inter
Eprec_i = snow[i].sum() * w_inter
condition = np.logical_and(temp_i <= 0, prec_i > 0)
smb[condition] += prec_i[condition]
if i % 5 == 0:
tempYEAR[i // 5] = temp_i
precYEAR[i // 5] = prec_i
EprecYEAR[i // 5] = Eprec_i
smbYEAR[i // 5] = smb
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
print("Time spent:", time.time() - ts)
我通过将结果与使用 numba 的代码的输出进行比较来验证结果。相差0.0000001左右,估计是四舍五入造成的。
print((tempYEAR_from_yours - tempYEAR_from_mine).sum()) # -8.429287845501676e-08
print((precYEAR_from_yours - precYEAR_from_mine).sum()) # 2.595697878859937e-09
print((EprecYEAR_from_yours - EprecYEAR_from_mine).sum()) # -7.430216442116944e-09
print((smbYEAR_from_yours - smbYEAR_from_mine).sum()) # -6.875431779462815e-09
在我的电脑上,这段代码用了 0.36 秒。它不使用 numba,甚至没有并行化。它只是消除了冗余。
上下文:
我有一个函数可以对我想尽可能高效地编写的多个数组进行 ups 采样(因为我必须 运行 它 370000 次)。
此函数接受多个输入,由 2 for
loops 组成。为了 ups 对我的数组进行采样,我使用参数 k
遍历此函数,并且我想摆脱此循环(它位于函数之外)。我尝试混合使用 map()
和 list-comprehension 来最小化我的计算时间,但我无法让它工作。
问题:
如何让我的 map()
部分代码正常工作(请参阅代码的最后一部分 )?有没有比 map()
更好的方法来摆脱 for
loops ?
总结:
- 函数
interpolate_and_get_results
:2for
厕所ps。将 3D、2D 数组和int
作为输入 - 此函数 运行 在
for
循环(参数k
)中,我想摆脱它
我写了一些示例代码,带有 map()
的部分不起作用,因为我想不出一种方法将 k
参数作为 list,还有一个输入.
谢谢!
ps:
import numpy as np
import time
#%% --- SETUP OF THE PROBLEM --- %%#
temperatures = np.random.rand(10,4,7)*100
precipitation = np.random.rand(10,4,7)
snow = np.random.rand(10,4,7)
# Flatten the arrays to make them iterable with map()
temperatures = temperatures.reshape(10,4*7)
precipitation = precipitation.reshape(10,4*7)
snow = snow.reshape(10,4*7)
# Array of altitudes to "adjust" the temperatures
alt = np.random.rand(4,7)*1000
# Flatten the array
alt = alt.reshape(4*7)
# Weight Matrix
w = np.random.rand(4*7, 1000, 1000)
#%% Function
def interpolate_and_get_results(temp, prec, Eprec, w, i, k):
# Do some calculations
factor1 = ((temperatures[i,k]-272.15) + (-alt[k] * -6/1000))
factor2 = precipitation[i,k]
factor3 = snow[i,k]
# Iterate through every cell of the upsampled arrays
for i in range(w.shape[1]):
for j in range(w.shape[2]):
val = w[k, i, j]
temp[i, j] += factor1 * val
prec[i, j] += factor2 * val
Eprec[i, j] += factor3 * val
#%% --- Function call without loop simplification --- ##%
# Prepare a template array
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the global arrays to be filled
tempYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
ts = time.time()
for i in range(temperatures.shape[0]):
# Create empty host arrays
temp = dummy.copy()
prec = dummy.copy()
Eprec = dummy.copy()
for k in range(w.shape[0]):
interpolate_and_get_results(temp, prec, Eprec, w, i, k)
print('Time: ', (time.time()-ts))
#%% --- With Map (DOES NOT WORK) --- %%#
del k
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the global arrays to be filled
tempYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR2 = np.zeros((9, dummy.shape[0], dummy.shape[1]))
# Create a list k to be iterated through with the map() function
k = [k for k in range(0, temperatures.shape[1])]
for i in range(temperatures.shape[0]):
# Create empty host arrays
temp = dummy.copy()
prec = dummy.copy()
Eprec = dummy.copy()
# Call the interpolate function with map() iterating through k
map(interpolate_and_get_results(temp, prec, Eprec, w, i, k), k)
@Jérôme Richard 使用 numba
应用户 @ken 的请求添加的代码(在我的电脑上需要 48.81 秒到 运行):
import numpy as np
import multiprocessing as mp
import time
#%% ------ Create data ------ ###
temperatures = np.random.rand(10,4,7)*100
precipitation = np.random.rand(10,4,7)
snow = np.random.rand(10,4,7)
# Array of altitudes to "adjust" the temperatures
alt = np.random.rand(4,7)*1000
#%% ------ IDW Interpolation ------ ###
# We create a weight matrix that we use to upsample our temperatures, precipitations and snow matrices
# This part is not that important, it works well as it is
MX,MY = np.shape(temperatures[0])
N = 300
T = np.zeros([N*MX+1, N*MY+1])
# create NxM inverse distance weight matrices based on Gaussian interpolation
x = np.arange(0,N*MX+1)
y = np.arange(0,N*MY+1)
X,Y = np.meshgrid(x,y)
k = 0
w = np.zeros([MX*MY,N*MX+1,N*MY+1])
for mx in range(MX):
for my in range(MY):
# Gaussian
add_point = np.exp(-((mx*N-X.T)**2+(my*N-Y.T)**2)/N**2)
w[k,:,:] += add_point
k += 1
sum_weights = np.sum(w, axis=0)
for k in range(MX*MY):
w[k,:,:] /= sum_weights
#%% --- Function --- %%#
# Code from Jérôme Richard:
import numba as nb
# get_results + interpolator
@nb.njit('void(float64[:,::1], float64[:,::1], float64[:,::1], float64[:,:,::1], int_, int_, int_, int_)', parallel=True)
def interpolate_and_get_results(temp, prec, Eprec, w, i, k, mx, my):
factor1 = ((temperatures[i,mx,my]-272.15) + (-alt[mx, my] * -6/1000))
factor2 = precipitation[i,mx,my]
factor3 = snow[i,mx,my]
# Filling the
for i in nb.prange(w.shape[1]):
for j in range(w.shape[2]):
val = w[k, i, j]
temp[i, j] += factor1 * val
prec[i, j] += factor2 * val
Eprec[i, j] += factor3 * val
#%% --- Main Loop --- %%#
ts = time.time()
if __name__ == '__main__':
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the permanent arrays to be filled
tempYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
smbYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
# Initialize semi-permanent array
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
# Loop over the "time" axis
for i in range(0, temperatures.shape[0]):
# Create empty semi-permanent arrays
temp = dummy.copy()
prec = dummy.copy()
Eprec = dummy.copy()
# Loop over the different weights
for k in range(w.shape[0]):
# Loops over the cells of the array to be upsampled
for mx in range(MX):
for my in range(MY):
interpolate_and_get_results(temp, prec, Eprec, w, i, k, mx, my)
# At each timestep, update the semi-permanent array using the results from the interpolate function
smb[np.logical_and(temp <= 0, prec > 0)] += prec[np.logical_and(temp <= 0, prec > 0)]
# Fill the permanent arrays (equivalent of storing the results at the end of every year)
# and reinitialize the semi-permanent array every 5th timestep
if i%5 == 0:
# Permanent
tempYEAR[int(i/5)] = temp
precYEAR[int(i/5)] = prec
EprecYEAR[int(i/5)] = Eprec
smbYEAR[int(i/5)] = smb
# Semi-permanent
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
print("Time spent:", time.time()-ts)
注意:这个答案不是关于如何使用地图,而是关于“更好的方法”。
您正在进行大量冗余计算。信不信由你,这段代码输出相同的结果。
# No change in the initialization section above.
ts = time.time()
if __name__ == '__main__':
dummy = np.zeros((w.shape[1], w.shape[2]))
# Initialize the permanent arrays to be filled
tempYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
precYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
EprecYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
smbYEAR = np.zeros((9, dummy.shape[0], dummy.shape[1]))
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
temperatures_inter = temperatures - 272.15
w_inter = w.sum(axis=0)
alt_inter = (alt * (-6 / 1000)).sum()
for i in range(0, temperatures_inter.shape[0]):
temp_i = (temperatures_inter[i].sum() - alt_inter) * w_inter
prec_i = precipitation[i].sum() * w_inter
Eprec_i = snow[i].sum() * w_inter
condition = np.logical_and(temp_i <= 0, prec_i > 0)
smb[condition] += prec_i[condition]
if i % 5 == 0:
tempYEAR[i // 5] = temp_i
precYEAR[i // 5] = prec_i
EprecYEAR[i // 5] = Eprec_i
smbYEAR[i // 5] = smb
smb = np.zeros((dummy.shape[0], dummy.shape[1]))
print("Time spent:", time.time() - ts)
我通过将结果与使用 numba 的代码的输出进行比较来验证结果。相差0.0000001左右,估计是四舍五入造成的。
print((tempYEAR_from_yours - tempYEAR_from_mine).sum()) # -8.429287845501676e-08
print((precYEAR_from_yours - precYEAR_from_mine).sum()) # 2.595697878859937e-09
print((EprecYEAR_from_yours - EprecYEAR_from_mine).sum()) # -7.430216442116944e-09
print((smbYEAR_from_yours - smbYEAR_from_mine).sum()) # -6.875431779462815e-09
在我的电脑上,这段代码用了 0.36 秒。它不使用 numba,甚至没有并行化。它只是消除了冗余。