根据 Pandas 中的另一列,使用 n 生成新的 w 值 1 到 n
Generating new column w value 1 to n with n depending on another column in Pandas
假设我有以下数据框
import pandas as pd
df = pd.DataFrame({'a': [1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4],
'b': [3,4,3,7,5,9,4,2,5,6,7,8,4,2,4,5,8,0]})
a b
0 1 3
1 1 4
2 1 3
3 2 7
4 2 5
5 2 9
6 2 4
7 2 2
8 3 5
9 3 6
10 3 7
11 3 8
12 4 4
13 4 2
14 4 4
15 4 5
16 4 8
17 4 0
我想创建一个值为 1 到 n 的新列 c,其中 n 取决于列 a 的值,如下所示:
a b c
0 1 3 1
1 1 4 2
2 1 3 3
3 2 7 1
4 2 5 2
5 2 9 3
6 2 4 4
7 2 2 5
8 3 5 1
9 3 6 2
10 3 7 3
11 3 8 4
12 4 4 1
13 4 2 2
14 4 4 3
15 4 5 4
16 4 8 5
17 4 0 6
虽然我可以使用 for 循环来编写它,但我的数据框很大并且计算成本很高,是否可以有效地生成这样的列?谢谢
使用groupby_cumcount
:
df['c'] = df.groupby('a').cumcount().add(1)
print(df)
# Output
a b c
0 1 3 1
1 1 4 2
2 1 3 3
3 2 7 1
4 2 5 2
5 2 9 3
6 2 4 4
7 2 2 5
8 3 5 1
9 3 6 2
10 3 7 3
11 3 8 4
12 4 4 1
13 4 2 2
14 4 4 3
15 4 5 4
16 4 8 5
17 4 0 6
假设我有以下数据框
import pandas as pd
df = pd.DataFrame({'a': [1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4],
'b': [3,4,3,7,5,9,4,2,5,6,7,8,4,2,4,5,8,0]})
a b
0 1 3
1 1 4
2 1 3
3 2 7
4 2 5
5 2 9
6 2 4
7 2 2
8 3 5
9 3 6
10 3 7
11 3 8
12 4 4
13 4 2
14 4 4
15 4 5
16 4 8
17 4 0
我想创建一个值为 1 到 n 的新列 c,其中 n 取决于列 a 的值,如下所示:
a b c
0 1 3 1
1 1 4 2
2 1 3 3
3 2 7 1
4 2 5 2
5 2 9 3
6 2 4 4
7 2 2 5
8 3 5 1
9 3 6 2
10 3 7 3
11 3 8 4
12 4 4 1
13 4 2 2
14 4 4 3
15 4 5 4
16 4 8 5
17 4 0 6
虽然我可以使用 for 循环来编写它,但我的数据框很大并且计算成本很高,是否可以有效地生成这样的列?谢谢
使用groupby_cumcount
:
df['c'] = df.groupby('a').cumcount().add(1)
print(df)
# Output
a b c
0 1 3 1
1 1 4 2
2 1 3 3
3 2 7 1
4 2 5 2
5 2 9 3
6 2 4 4
7 2 2 5
8 3 5 1
9 3 6 2
10 3 7 3
11 3 8 4
12 4 4 1
13 4 2 2
14 4 4 3
15 4 5 4
16 4 8 5
17 4 0 6