实施 log Gabor 滤波器组

Implementing log Gabor filter bank

我正在阅读这篇论文"Self-Invertible 2D Log-Gabor Wavelets"它定义了 2D log gabor 滤波器:

论文还指出滤波器仅覆盖频率的一侧 space 并在这张图片中显示

在我尝试实施过滤器时,我得到的结果与论文中所说的不符。让我从我的实现开始,然后我将说明问题。

实施:

  1. 我创建了一个包含滤波器的二维数组并转换了每个索引,以便频域的原点位于数组的中心,正 x-axis 向右和正 y-axis 上升。

    number_scales = 5         # scale resolution
    number_orientations = 9   # orientation resolution
    N = constantDim           # image dimensions
    
    def getLogGaborKernal(scale, angle, logfun=math.log2, norm = True):
        # setup up filter configuration
        center_scale = logfun(N) - scale          
        center_angle = ((np.pi/number_orientations) * angle) if (scale % 2) \
                    else ((np.pi/number_orientations) * (angle+0.5))
        scale_bandwidth =  0.996 * math.sqrt(2/3)
        angle_bandwidth =  0.996 * (1/math.sqrt(2)) * (np.pi/number_orientations)
    
        # 2d array that will hold the filter
        kernel = np.zeros((N, N))
        # get the center of the 2d array so we can shift origin
        middle = math.ceil((N/2)+0.1)-1
    
        # calculate the filter
        for x in range(0,constantDim):
            for y in range(0,constantDim):
                # get the transformed x and y where origin is at center
                # and positive x-axis goes right while positive y-axis goes up
                x_t, y_t = (x-middle),-(y-middle)
                # calculate the filter value at given index
                kernel[y,x] = logGaborValue(x_t,y_t,center_scale,center_angle,
            scale_bandwidth, angle_bandwidth,logfun)
    
        # normalize the filter energy
        if norm:
            Kernel = kernel / np.sum(kernel**2)
        return kernel
    
  2. 为了计算每个索引处的过滤器值,在我们转到 log-polar space

    的地方进行另一个转换
    def logGaborValue(x,y,center_scale,center_angle,scale_bandwidth,
                  angle_bandwidth, logfun):
        # transform to polar coordinates
        raw, theta = getPolar(x,y)
        # if we are at the center, return 0 as in the log space
        # zero is not defined
        if raw == 0:
            return 0
    
        # go to log polar coordinates
        raw = logfun(raw)
    
        # calculate (theta-center_theta), we calculate cos(theta-center_theta) 
        # and sin(theta-center_theta) then use atan to get the required value,
        # this way we can eliminate the angular distance wrap around problem
        costheta, sintheta = math.cos(theta), math.sin(theta)
        ds = sintheta * math.cos(center_angle) - costheta * math.sin(center_angle)    
        dc = costheta * math.cos(center_angle) + sintheta * math.sin(center_angle)  
        dtheta = math.atan2(ds,dc)
    
        # final value, multiply the radial component by the angular one
        return math.exp(-0.5 * ((raw-center_scale) / scale_bandwidth)**2) * \
                math.exp(-0.5 * (dtheta/angle_bandwidth)**2)
    

问题:

  1. 角度:论文指出,从 1->8 索引角度会产生良好的方向覆盖,但在我的实现中角度从 1 ->n 除了半方向外不覆盖。甚至垂直方向也没有被正确覆盖。这可以在此图中显示,其中包含比例为 3 的过滤器集和方向范围为 1->8:

  2. 覆盖范围: 从上面的过滤器可以清楚地看出,过滤器覆盖了 space 的两侧,这不是论文所说的。这可以通过使用范围从 -4 -> 4 的 9 个方向变得更加明确。下图包含一张图像中的所有过滤器,以显示它如何覆盖光谱的两侧(该图像是通过在每个位置取最大值创建的来自所有过滤器):

  3. Middle Column (orientation $\pi / 2$):第一张图中orientation from 3 -> 8可以看出filter在 $ \pi / 2$ 方向消失。这是正常的吗?当我将所有过滤器(所有 5 个尺度和 9 个方向)组合在一张图像中时,也可以看到这一点:

更新: 在空间域中添加滤波器的脉冲响应,可以看到 -4 和 4 方向有明显的失真:

经过大量的代码分析,我发现我的实现是正确的,但是 getPolar 功能被搞砸了,所以上面的代码应该可以正常工作。这是没有 getPolar 功能的新代码,如果有人正在寻找的话:

number_scales = 5          # scale resolution
number_orientations = 8    # orientation resolution
N = 128                    # image dimensions
def getFilter(f_0, theta_0):
    # filter configuration
    scale_bandwidth =  0.996 * math.sqrt(2/3)
    angle_bandwidth =  0.996 * (1/math.sqrt(2)) * (np.pi/number_orientations)

    # x,y grid
    extent = np.arange(-N/2, N/2 + N%2)
    x, y = np.meshgrid(extent,extent)

    mid = int(N/2)
    ## orientation component ##
    theta = np.arctan2(y,x)
    center_angle = ((np.pi/number_orientations) * theta_0) if (f_0 % 2) \
                else ((np.pi/number_orientations) * (theta_0+0.5))

    # calculate (theta-center_theta), we calculate cos(theta-center_theta) 
    # and sin(theta-center_theta) then use atan to get the required value,
    # this way we can eliminate the angular distance wrap around problem
    costheta = np.cos(theta)
    sintheta = np.sin(theta)
    ds = sintheta * math.cos(center_angle) - costheta * math.sin(center_angle)    
    dc = costheta * math.cos(center_angle) + sintheta * math.sin(center_angle)  
    dtheta = np.arctan2(ds,dc)

    orientation_component =  np.exp(-0.5 * (dtheta/angle_bandwidth)**2)

    ## frequency componenet ##
    # go to polar space
    raw = np.sqrt(x**2+y**2)
    # set origin to 1 as in the log space zero is not defined
    raw[mid,mid] = 1
    # go to log space
    raw = np.log2(raw)

    center_scale = math.log2(N) - f_0
    draw = raw-center_scale
    frequency_component = np.exp(-0.5 * (draw/ scale_bandwidth)**2)

    # reset origin to zero (not needed as it is already 0?)
    frequency_component[mid,mid] = 0

    return frequency_component * orientation_component