回归咖啡的测试标签,不允许浮动?

Test labels for regression caffe, float not allowed?

我正在使用 caffe 进行回归,我的 test.txttrain.txt 文件是这样的:

/home/foo/caffe/data/finetune/flickr/3860781056.jpg 2.0  
/home/foo/caffe/data/finetune/flickr/4559004485.jpg 3.6  
/home/foo/caffe/data/finetune/flickr/3208038920.jpg 3.2  
/home/foo/caffe/data/finetune/flickr/6170430622.jpg 4.0  
/home/foo/caffe/data/finetune/flickr/7508671542.jpg 2.7272

我的问题是当我在阅读时使用浮动标签时,caffe 似乎不允许像 2.0 这样的浮动标签,例如 'test.txt' 文件 caffe 认识

a total of 1 images

这是错误的。

但是当我将文件中的 2.0 更改为 2 并且以下行相同时,caffe 现在给出

a total of 2 images

暗示浮动标签是造成问题的原因。

任何人都可以帮我解决这个问题,我肯定需要使用浮动标签进行回归,所以有人知道解决这个问题的方法或解决方案吗?提前致谢。

编辑 对于面临类似问题的任何人 可能会有帮助。感谢@Shai。

当使用图像数据集输入层时(使用 lmdbleveldb 后端)caffe 仅支持每个输入图像一个 integer 标签。

如果你想做回归,并使用浮点标签,你应该尝试使用 HDF5 数据层。例如参见 [​​=19=].

在 python 中,您可以使用 h5py 包来创建 hdf5 文件。

import h5py, os
import caffe
import numpy as np

SIZE = 224 # fixed size to all images
with open( 'train.txt', 'r' ) as T :
    lines = T.readlines()
# If you do not have enough memory split data into
# multiple batches and generate multiple separate h5 files
X = np.zeros( (len(lines), 3, SIZE, SIZE), dtype='f4' ) 
y = np.zeros( (len(lines),1), dtype='f4' )
for i,l in enumerate(lines):
    sp = l.split(' ')
    img = caffe.io.load_image( sp[0] )
    img = caffe.io.resize( img, (SIZE, SIZE, 3) ) # resize to fixed size
    # you may apply other input transformations here...
    # Note that the transformation should take img from size-by-size-by-3 and transpose it to 3-by-size-by-size
    # for example
    # transposed_img = img.transpose((2,0,1))[::-1,:,:] # RGB->BGR
    X[i] = transposed_img
    y[i] = float(sp[1])
with h5py.File('train.h5','w') as H:
    H.create_dataset( 'X', data=X ) # note the name X given to the dataset!
    H.create_dataset( 'y', data=y ) # note the name y given to the dataset!
with open('train_h5_list.txt','w') as L:
    L.write( 'train.h5' ) # list all h5 files you are going to use

获得所有 h5 文件和列出它们的相应测试文件后,您可以将 HDF5 输入层添加到 train_val.prototxt:

 layer {
   type: "HDF5Data"
   top: "X" # same name as given in create_dataset!
   top: "y"
   hdf5_data_param {
     source: "train_h5_list.txt" # do not give the h5 files directly, but the list.
     batch_size: 32
   }
   include { phase:TRAIN }
 }

澄清:
当我说 "caffe only supports one integer label per input image" 我并不是说 leveldb/lmdb 容器是有限的,我的意思是 caffe 的工具,特别是 工具。
仔细观察,caffe 似乎将 Datum 类型的数据存储在 leveldb/lmdb 中,并且该类型的 "label" 属性 被定义为整数(参见 caffe.proto)因此,当使用 caffe 接口 leveldb/lmdb 时,每个图像只能使用一个 int32 标签。

already covers saving float labels to HDF5 format. In case LMDB is required/preferred, here's a snippet on how to create an LMDB from float data (adapted from this github 评论):

import lmdb
import caffe
def scalars_to_lmdb(scalars, path_dst):

    db = lmdb.open(path_dst, map_size=int(1e12))

    with db.begin(write=True) as in_txn:    
        for idx, x in enumerate(scalars):            
            content_field = np.array([x])
            # get shape (1,1,1)
            content_field = np.expand_dims(content_field, axis=0)
            content_field = np.expand_dims(content_field, axis=0)
            content_field = content_field.astype(float)

            dat = caffe.io.array_to_datum(content_field)
            in_txn.put('{:0>10d}'.format(idx) dat.SerializeToString())
    db.close()

我最终转置,切换通道顺序,并使用无符号整数而不是浮点数来获得结果。我建议从您的 HDF5 文件中读回图像以确保它正确显示。

首先将图像读取为无符号整数:

img = np.array(Image.open('images/' + image_name))

然后将通道顺序从 RGB 更改为 BGR:

img = img[:, :, ::-1]

最后,从高 x 宽 x 通道切换到通道 x 高 x 宽:

img = img.transpose((2, 0, 1))

仅仅改变形状会扰乱您的图像并破坏您的数据!

回读图像:

with h5py.File(h5_filename, 'r') as hf:
    images_test = hf.get('images')
    targets_test = hf.get('targets')
    for i, img in enumerate(images_test):
        print(targets_test[i])
        from skimage.viewer import ImageViewer
        viewer = ImageViewer(img.reshape(SIZE, SIZE, 3))
        viewer.show()

这是我编写的脚本,它处理自动驾驶汽车任务的两个标签(转向和速度):https://gist.github.com/crizCraig/aa46105d34349543582b177ae79f32f0

除了 above, I wrote a MultiTaskData 层支持 float 类型的标签。

其主要思想是将标签存储在Datumfloat_data字段中,MultiTaskDataLayer会根据[的值将其解析为任意数量任务的标签。 =15=] 和 label_dimensionnet.prototxt 中设置。相关文件包括:caffe.protomultitask_data_layer.hpp/cppio.hpp/cpp.

你可以轻松地将这一层添加到你自己的caffe中并像这样使用它(这是面部表情标签分布学习任务的示例,其中"exp_label"可以是浮点类型的向量,例如[0.1, 0.1, 0.5, 0.2, 0.1]代表面部表情(5class)的概率分布。):

    name: "xxxNet"
    layer {
        name: "xxx"
        type: "MultiTaskData"
        top: "data"
        top: "exp_label"
        data_param { 
            source: "expression_ld_train_leveldb"   
            batch_size: 60 
            task_num: 1
            label_dimension: 8
        }
        transform_param {
            scale: 0.00390625
            crop_size: 60
            mirror: true
        }
        include:{ phase: TRAIN }
    }
    layer { 
        name: "exp_prob" 
        type: "InnerProduct"
        bottom: "data"  
        top: "exp_prob" 
        param {
            lr_mult: 1
            decay_mult: 1
        }
        param {
            lr_mult: 2
            decay_mult: 0
        }
        inner_product_param {
            num_output: 8
            weight_filler {
            type: "xavier"
            }    
        bias_filler {      
            type: "constant"
            }  
        }
    }
    layer {  
        name: "exp_loss"  
        type: "EuclideanLoss"  
        bottom: "exp_prob" 
        bottom: "exp_label"
        top: "exp_loss"
        include:{ phase: TRAIN }
    }