cProfile 导入

cProfile with imports

我目前正在学习如何使用 cProfile,我有一些疑问。

我目前正在尝试分析以下脚本:

import time

def fast():
    print("Fast!")

def slow():
    time.sleep(3)
    print("Slow!")

def medium():
    time.sleep(0.5)
    print("Medium!")

fast()
slow()
medium()

我执行命令python -m cProfile test_cprofile.py,结果如下:

Fast!
Slow!
Medium!
     7 function calls in 3.504 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    3.504    3.504 test_cprofile.py:1(<module>)
    1    0.000    0.000    0.501    0.501 test_cprofile.py:10(medium)
    1    0.000    0.000    0.000    0.000 test_cprofile.py:3(fast)
    1    0.000    0.000    3.003    3.003 test_cprofile.py:6(slow)
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
    2    3.504    1.752    3.504    1.752 {time.sleep}

但是,当我使用顶部的 pylab 导入 (import pylab) 编辑脚本时,cProfile 的输出非常大。我试图使用 python -m cProfile test_cprofile.py | head -n 10 来限制行数,但是我收到以下错误:

Traceback (most recent call last):
File "/home/user/anaconda/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "/home/user/anaconda/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/home/user/anaconda/lib/python2.7/cProfile.py", line 199, in <module>
main()
File "/home/user/anaconda/lib/python2.7/cProfile.py", line 192, in main
runctx(code, globs, None, options.outfile, options.sort)
File "/home/user/anaconda/lib/python2.7/cProfile.py", line 56, in runctx
result = prof.print_stats(sort)
File "/home/user/anaconda/lib/python2.7/cProfile.py", line 81, in print_stats
pstats.Stats(self).strip_dirs().sort_stats(sort).print_stats()
File "/home/user/anaconda/lib/python2.7/pstats.py", line 360, in print_stats
self.print_line(func)
File "/home/user/anaconda/lib/python2.7/pstats.py", line 438, in print_line
print >> self.stream, c.rjust(9),
IOError: [Errno 32] Broken pipe

有人可以帮助解决与此类似情况的正确程序吗,我们有一个 import pylab 或另一个模块在 cProfile 上生成如此高的输出信息?

我不知道有什么方法可以像您一样通过 运行 cProfile 模块直接从命令行进行选择性分析。

但是,您可以通过修改代码以显式 import 模块来完成此操作,但您必须自己完成所有操作。下面是如何对您的示例代码执行此操作:

(注:以下代码兼容Python2和3。)

from cProfile import Profile
from pstats import Stats
prof = Profile()

prof.disable()  # i.e. don't time imports
import time
prof.enable()  # profiling back on

def fast():
    print("Fast!")

def slow():
    time.sleep(3)
    print("Slow!")

def medium():
    time.sleep(0.5)
    print("Medium!")

fast()
slow()
medium()

prof.disable()  # don't profile the generation of stats
prof.dump_stats('mystats.stats')

with open('mystats_output.txt', 'wt') as output:
    stats = Stats('mystats.stats', stream=output)
    stats.sort_stats('cumulative', 'time')
    stats.print_stats()

mystats_output.txt 之后的文件内容:

Sun Aug 02 16:55:38 2015    mystats.stats

         6 function calls in 3.522 seconds

   Ordered by: cumulative time, internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        2    3.522    1.761    3.522    1.761 {time.sleep}
        1    0.000    0.000    3.007    3.007 cprofile-with-imports.py:15(slow)
        1    0.000    0.000    0.515    0.515 cprofile-with-imports.py:19(medium)
        1    0.000    0.000    0.000    0.000 cprofile-with-imports.py:12(fast)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

更新:

您可以通过使用 context manager method to automate things. Instead of adding a method with a name like enable_profiling() to do this, I've implemented it so that you can just call the class instance in a with 语句派生您自己的 Profile class 来更轻松地启用分析。只要退出 with 语句控制的上下文,分析就会自动关闭。

这是 class:

from contextlib import contextmanager
from cProfile import Profile
from pstats import Stats

class Profiler(Profile):
    """ Custom Profile class with a __call__() context manager method to
        enable profiling.
    """
    def __init__(self, *args, **kwargs):
        super(Profile, self).__init__(*args, **kwargs)
        self.disable()  # Profiling initially off.

    @contextmanager
    def __call__(self):
        self.enable()
        yield  # Execute code to be profiled.
        self.disable()

使用它而不是普通的 Profile 对象看起来像这样:

profiler = Profiler()  # Create class instance.

import time  # Import won't be profiled since profiling is initially off.

with profiler():  # Call instance to enable profiling.
    def fast():
        print("Fast!")

    def slow():
        time.sleep(3)
        print("Slow!")

    def medium():
        time.sleep(0.5)
        print("Medium!")

    fast()
    slow()
    medium()

profiler.dump_stats('mystats.stats')  # Stats output generation won't be profiled.

with open('mystats_output.txt', 'wt') as output:
    stats = Stats('mystats.stats', stream=output)
    stats.strip_dirs().sort_stats('cumulative', 'time')
    stats.print_stats()

# etc...

因为它是一个 Profile subclass,所有基本 class' 方法,例如 dump_stats() 仍然可用,如图所示。

当然,您可以更进一步,添加例如一种生成统计数据并以某种自定义方式格式化它们的方法。

如果您稍微更改脚本,那么在不分析导入的情况下分析脚本会容易得多。

test_cprofiler.py

import time
import pylab

def fast():
    print("Fast!")

def slow():
    time.sleep(3)
    print("Slow!")

def medium():
    time.sleep(0.5)
    print("Medium!")

def main():
    fast()
    slow()
    medium()

if __name__ == "__main__":
    main()

profiler.py

import cProfile

import test_cprofiler

cProfile.run("test_cprofiler.main()")

运行 为:

python profiler.py

产生以下输出:

Fast!
Slow!
Medium!
         8 function calls in 3.498 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    3.498    3.498 <string>:1(<module>)
        1    0.000    0.000    2.998    2.998 run.py:11(slow)
        1    0.000    0.000    3.498    3.498 run.py:15(main)
        1    0.000    0.000    0.000    0.000 run.py:4(fast)
        1    0.000    0.000    0.500    0.500 run.py:7(medium)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        2    3.498    1.749    3.498    1.749 {time.sleep}