按数组numpy过滤

filter by array numpy

我正在尝试用我收集的另一个数组(具有相同的值)过滤我的 ndarray

我的主要 ndarray 看起来像

[['Name' 'Col1' 'Count']
 ['test' '' '413']
 ['erd' ' ' '60']
 ..., 
 ['Td1' 'f' '904']
 ['Td2' 'K' '953']
 ['Td3' 'r' '111']]

我有另一个包含各种匹配名称的列表

names = ['Td1','test','erd']

我想做什么

我想使用列表名称作为上面 ndarray 的过滤器吗?

我试过的

name_filter = main_ndarray[:,0] == names

这行不通

我的期望

[['Name' 'Col1' 'Count']
 ['test' '' '413']
 ['erd' ' ' '60']
 ['Td1' 'f' '904']]

您也可以使用 filter 功能。

cats_array = numpy.array(
 [['Name' ,'Col1', 'Count'],
 ['test', '' ,'413'],
 ['erd' ,' ' ,'60'],
 ['Td1' ,'f' ,'904'],
 ['Td2' ,'K' ,'953'],
 ['Td3' ,'r', '111']]
 )

 names = ['Td1','test','erd']

 filter(lambda x: x[0] in names, cats_array)

给出:

[array(['test', '', '413'],
       dtype='|S5'), array(['erd', ' ', '60'],
       dtype='|S5'), array(['Td1', 'f', '904'],
       dtype='|S5')]

考虑对此类数据使用 Pandas:

import pandas as pd

data = [['Name', 'Col1', 'Count'],
        ['test', '', '413'],
        ['erd', ' ', '60'],
        ['Td1', 'f', '904'],
        ['Td2', 'K', '953'],
        ['Td3', 'r', '111']]

df = pd.DataFrame(data[1:], columns=data[0])
names = ['Td1','test','erd']
result = df[df.Name.isin(names)]

结果:

>>> df
   Name Col1 Count
0  test        413
1   erd         60
2   Td1    f   904
3   Td2    K   953
4   Td3    r   111
>>> result
   Name Col1 Count
0  test        413
1   erd         60
2   Td1    f   904
>>>

参考资料

我也会选择@YXD 的 Pandas 解决方案,但为了完整起见,我还提供了一个基于列表理解的简单解决方案:

data = [['Name', 'Col1', 'Count'],
 ['test', '', '413'],
 ['erd', ' ', '60'],
 ['Td1', 'f', '904'],
 ['Td2', 'K', '953'],
 ['Td3', 'r', '111']]

names = ['Td1', 'test', 'erd']

# select all sublist of data
res = [l for l in data if l[0] in names]

# insert the first row of data
res.insert(0, data[0]) 

然后给你想要的输出:

[['Name', 'Col1', 'Count'],
 ['test', '', '413'],
 ['erd', ' ', '60'],
 ['Td1', 'f', '904']]