SQL 中的 Delta E(CIE 实验室)计算和排序性能

Performance of Delta E (CIE Lab) calculating and sorting in SQL

我有一个数据库 table,其中每一行都是一种颜色。我的目标:给定一个输入颜色,计算它与 DB table 中每种颜色的距离,并按该距离对结果进行排序。或者,作为用户故事陈述:当我选择一种颜色时,我想查看与我选择的颜色最相似的颜色列表,最接近的匹配项位于列表顶部。

据我所知,为了做到这一点,各种 Delta E (CIE Lab) formulae are the best choice. I wasn't able to find any native SQL implementations of the formulae, so I wrote my own SQL versions of Delta E CIE 1976 and Delta E CIE 2000. I verified the accuracy of my SQL versions of the formulae, against the results generated by the python-colormath 实现。

1976 公式很容易用 SQL 或任何其他语言编写,因为它是一个简单的欧氏距离计算。它对我来说在任何大小的数据集上都表现良好且快速(在具有 100,000 行的颜色 table 上测试它,查询时间不到 1 秒)。

相比之下,2000 年的公式非常长且复杂。我设法在 SQL 中实现了它,但它的性能并不好:查询 10,000 行大约需要 5 秒,查询 100,000 行大约需要 1 分钟。

我写了一篇example app called colorsearchtest (in Python / Flask / Postgres), to play around with my implementations (and I set up a demo on Heroku)。如果您试用此应用程序,您可以清楚地看到 1976 年和 2000 年 Delta E 查询之间的性能差异。

这是颜色 table 的架构(对于每种颜色,它存储各自的 RGB 和 Lab 表示,作为三个数值):

CREATE TABLE color (
    id integer NOT NULL,
    rgb_r integer,
    rgb_g integer,
    rgb_b integer,
    lab_l double precision,
    lab_a double precision,
    lab_b double precision
);

这是 table 中的一些数据(所有颜色都是随机的,由我的应用程序中的脚本生成):

INSERT INTO color (id, rgb_r, rgb_g, rgb_b, lab_l, lab_a, lab_b)
VALUES (902, 164, 214, 189, 81.6521019943304793,
        -21.2561872439361323, 7.08354581694699004);

INSERT INTO color (id, rgb_r, rgb_g, rgb_b, lab_l, lab_a, lab_b)
VALUES (903, 113, 229, 64, 81.7930860963098212,
        -60.5865728472875205, 66.4022741184551819);

INSERT INTO color (id, rgb_r, rgb_g, rgb_b, lab_l, lab_a, lab_b)
VALUES (904, 65, 86, 78, 34.6593864327796624,
        -9.95482220634028003, 2.02661293272071719);

...

这是我正在使用的 Delta E CIE 2000 SQL 函数:

CREATE OR REPLACE FUNCTION
DELTA_E_CIE2000(double precision, double precision,
                double precision, double precision,
                double precision, double precision,
                double precision, double precision,
                double precision)
RETURNS double precision
AS $$

WITH
    c AS (SELECT
            (CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))
        AS lab_pair_str,
            (( + ) /
                2.0)
        AS avg_lp,
            SQRT(
                POW(, 2.0) +
                POW(, 2.0))
        AS c1,
            SQRT(
                POW((), 2.0) +
                POW((), 2.0))
        AS c2),
    gs AS (SELECT
            c.lab_pair_str,
            (0.5 *
                (1.0 - SQRT(
                    POW(((c.c1 + c.c2) / 2.0), 7.0) / (
                        POW(((c.c1 + c.c2) / 2.0), 7.0) +
                        POW(25.0, 7.0)))))
        AS g
        FROM c
        WHERE c.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))),
    ap AS (SELECT
            gs.lab_pair_str,
            ((1.0 + gs.g) * )
        AS a1p,
            ((1.0 + gs.g) * )
        AS a2p
        FROM gs
        WHERE gs.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))),
    cphp AS (SELECT
            ap.lab_pair_str,
            SQRT(
                POW(ap.a1p, 2.0) +
                POW(, 2.0))
        AS c1p,
            SQRT(
                POW(ap.a2p, 2.0) +
                POW(, 2.0))
        AS c2p,
            (
                DEGREES(ATAN2(, ap.a1p)) + (
                    CASE
                        WHEN DEGREES(ATAN2(, ap.a1p)) < 0.0
                        THEN 360.0
                        ELSE 0.0
                        END))
        AS h1p,
            (
                DEGREES(ATAN2(, ap.a2p)) + (
                    CASE
                        WHEN DEGREES(ATAN2(, ap.a2p)) < 0.0
                        THEN 360.0
                        ELSE 0.0
                        END))
        AS h2p
        FROM ap
        WHERE ap.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))),
    av AS (SELECT
            cphp.lab_pair_str,
            ((cphp.c1p + cphp.c2p) /
                2.0)
        AS avg_c1p_c2p,
            (((CASE
                WHEN (ABS(cphp.h1p - cphp.h2p) > 180.0)
                THEN 360.0
                ELSE 0.0
                END) +
              cphp.h1p +
              cphp.h2p) /
                2.0)
        AS avg_hp
        FROM cphp
        WHERE cphp.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))),
    ts AS (SELECT
            av.lab_pair_str,
            (1.0 -
                0.17 * COS(RADIANS(av.avg_hp - 30.0)) +
                0.24 * COS(RADIANS(2.0 * av.avg_hp)) +
                0.32 * COS(RADIANS(3.0 * av.avg_hp + 6.0)) -
                0.2 * COS(RADIANS(4.0 * av.avg_hp - 63.0)))
        AS t,
            ((
                    (cphp.h2p - cphp.h1p) +
                    (CASE
                        WHEN (ABS(cphp.h2p - cphp.h1p) > 180.0)
                        THEN 360.0
                        ELSE 0.0
                        END))
                -
                (CASE
                    WHEN (cphp.h2p > cphp.h1p)
                    THEN 720.0
                    ELSE 0.0
                    END))
        AS delta_hlp
        FROM av
        INNER JOIN cphp
        ON av.lab_pair_str = cphp.lab_pair_str
        WHERE av.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))),
    d AS (SELECT
            ts.lab_pair_str,
            ( - )
        AS delta_lp,
            (cphp.c2p - cphp.c1p)
        AS delta_cp,
            (2.0 * (
                SQRT(cphp.c2p * cphp.c1p) *
                SIN(RADIANS(ts.delta_hlp) / 2.0)))
        AS delta_hp,
            (1.0 + (
                (0.015 * POW(c.avg_lp - 50.0, 2.0)) /
                SQRT(20.0 + POW(c.avg_lp - 50.0, 2.0))))
        AS s_l,
            (1.0 + 0.045 * av.avg_c1p_c2p)
        AS s_c,
            (1.0 + 0.015 * av.avg_c1p_c2p * ts.t)
        AS s_h,
            (30.0 * EXP(-(POW(((av.avg_hp - 275.0) / 25.0), 2.0))))
        AS delta_ro,
            SQRT(
                (POW(av.avg_c1p_c2p, 7.0)) /
                (POW(av.avg_c1p_c2p, 7.0) + POW(25.0, 7.0)))
        AS r_c
        FROM ts
        INNER JOIN cphp
        ON ts.lab_pair_str = cphp.lab_pair_str
        INNER JOIN c
        ON ts.lab_pair_str = c.lab_pair_str
        INNER JOIN av
        ON ts.lab_pair_str = av.lab_pair_str
        WHERE ts.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR))),
    r AS (SELECT
            d.lab_pair_str,
            (-2.0 * d.r_c * SIN(2.0 * RADIANS(d.delta_ro)))
        AS r_t
        FROM d
        WHERE d.lab_pair_str = (
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR) || ',' ||
            CAST( AS VARCHAR)))
SELECT
        SQRT(
            POW(d.delta_lp / (d.s_l * ), 2.0) +
            POW(d.delta_cp / (d.s_c * ), 2.0) +
            POW(d.delta_hp / (d.s_h * ), 2.0) +
            r.r_t *
            (d.delta_cp / (d.s_c * )) *
            (d.delta_hp / (d.s_h * )))
    AS delta_e_cie2000
FROM          r
INNER JOIN    d
ON            r.lab_pair_str = d.lab_pair_str
WHERE         r.lab_pair_str = (
          CAST( AS VARCHAR) || ',' ||
          CAST( AS VARCHAR) || ',' ||
          CAST( AS VARCHAR) || ',' ||
          CAST( AS VARCHAR) || ',' ||
          CAST( AS VARCHAR) || ',' ||
          CAST( AS VARCHAR))

$$

LANGUAGE SQL
IMMUTABLE
RETURNS NULL ON NULL INPUT;

(我最初使用大约 10 层深的嵌套子查询编写此函数,但随后我将其重新编写为使用 WITH 语句,即 Postgres CTE。新版本更具可读性和性能和老版本差不多,可以看both versions in the code.)

定义函数后,我在这样的查询中使用它:

SELECT        c.rgb_r,
              c.rgb_g,
              c.rgb_b,
        DELTA_E_CIE2000(73.9206633504, -50.2996953437,
                        23.8259166281,
                        c.lab_l, c.lab_a, c.lab_b,
                        1.0, 1.0, 1.0)
    AS de2000
FROM          color c
ORDER BY      de2000
LIMIT         100;

所以,我的问题是:有什么方法可以提高 DELTA_E_CIE2000 函数的性能,使其可实时用于非平凡数据集?或者,考虑到公式的复杂性,它会尽可能快吗?

根据我在我的演示应用程序中所做的测试,我会说对于在网站上进行简单 "similar colors" 搜索的用例,1976 和 1976 之间的结果准确性差异2000的功能其实可以忽略不计。也就是说,我已经确信 1976 年的公式符合我的需要 "good enough"。然而,2000 函数 return 的结果稍微好一些(很大程度上取决于输入颜色在 Lab space 中的位置),实际上,我只是好奇它是否可以加速进一步。

两件事:1) 您没有充分利用数据库,2) 您的问题是自定义 PostgreSQL 扩展的一个很好的例子。原因如下。

您仅使用数据库作为存储,将颜色存储为浮点数。在您当前的配置中,无论查询类型如何,数据库将始终必须检查所有值(进行顺序扫描)。这意味着大量的 IO 和为少数返回的匹配项进行的大量计算。您正试图找到最接近的 N 种颜色,因此有几种方法可以避免对所有数据执行计算。

简单的改进

最简单的方法是将您的计算限制在较小的数据子集中。如果组件差异更大,您可以假设差异会更大。如果您可以找到组件之间的安全差异(结果总是不合适),则可以使用带 btree 索引的范围 WHERE 完全排除这些颜色。但是,由于 L*a*b 颜色的性质space,这可能会使您的结果变差。

首先创建索引:

CREATE INDEX color_lab_l_btree ON color USING btree (lab_l);
CREATE INDEX color_lab_a_btree ON color USING btree (lab_a);
CREATE INDEX color_lab_b_btree ON color USING btree (lab_b);

然后我调整了您的查询以包含一个 WHERE 子句以仅过滤颜色,其中任何组件最多有 20 个不同。

更新: 再看一遍,加个limit 20很可能会使结果变差,因为我在space中至少发现了一个点,为此成立。:

SELECT 
    c.rgb_r, c.rgb_g, c.rgb_b,
    DELTA_E_CIE2000(
        25.805780252087963, 53.33446637366859, -45.03961353720049, 
        c.lab_l, c.lab_a, c.lab_b,
        1.0, 1.0, 1.0) AS de2000
FROM color c 
WHERE 
    c.lab_l BETWEEN 25.805780252087963 - 20 AND 25.805780252087963 + 20 
    AND c.lab_a BETWEEN 53.33446637366859 - 20 AND 53.33446637366859 + 20 
    AND c.lab_b BETWEEN -45.03961353720049 - 20 AND -45.03961353720049 + 20 
ORDER BY de2000 ;

我用你的脚本填充了 table 100000 种随机颜色并进行了测试:

没有索引的时间:44006,851 毫秒

索引和范围查询时间:1293,092 毫秒

您也可以将此 WHERE 子句添加到 delta_e_cie1976_query,在我的随机数据上,它将查询时间从 ~110 毫秒减少到 ~22 毫秒。

顺便说一句:根据经验,我得到了 20:我尝试了 10,但只得到了 380 条记录,这似乎有点低,并且可能会排除一些更好的选择,因为限制是 100。20 的完整集是 2900 行并且可以相当确定最接近的比赛将在那里。我没有详细研究 DELTA_E_CIE2000 或 L*a*b* 颜色 space 因此阈值可能需要根据不同的组件进行调整才能真正实现,但排除不感兴趣的原则数据保持。

用 C 重写 Delta E CIE 2000

正如您已经说过的,Delta E CIE 2000 很复杂并且相当不适合 table 在 SQL 中实施。它目前在我的笔记本电脑上每次通话使用大约 0.4 毫秒。在 C 中实现它应该会大大加快速度。 PostgreSQL 将默认成本分配给 SQL 函数为 100,C 函数为 1。我猜这是基于实际经验。

更新: 因为这也解决了我的一个问题,我重新实现了 C 中 colormath 模块的 Delta E 函数作为 PostgreSQL 扩展,可在 PGXN。有了这个,当从 table 中查询具有 100k 条记录的所有记录时,我可以看到 CIE2000 的加速大约为 150 倍。

使用此 C 函数,对于 10 万种颜色,我得到的查询时间在 147 毫秒到 160 毫秒之间。有了额外的 WHERE,查询时间大约是 20 毫秒,这对我来说似乎很容易接受table。

最佳但先进的解决方案

但是,由于您的问题是 3 维中的 N 个最近邻搜索 space,您可以使用 PostgreSQL since version 9.1 中的 K-最近邻索引。

为此,您需要将 L*a*b* 组件放入 cube. This extension does not yet support distance operator (it's in the works),但即使可以,它也不支持 Delta E 距离,您需要重新实现它作为 C 扩展。

这意味着实现 GiST 索引运算符 class(btree_gist PostgreSQL extension in contrib does this) to support indexing according to Delta E distances. The good part is you could then use different operators for different versions of Delta E, eg. <-> for Delta E CIE 2000 and <#> for Delta E CIE 1976 and queries would be really really fast 用于小 LIMIT,即使使用 Delta E CIE 2000。

最终可能取决于您的(业务)要求和限制。