PostgreSQL - 在 VIEW 上加入慢速查询

PostgreSQL - Slow query joining on a VIEW

我正在尝试在 table(玩家)和视图(player_main_colors)之间进行简单连接:

SELECT P.*, C.main_color FROM players P
    OUTER LEFT JOIN player_main_colors C USING (player_id)
    WHERE P.user_id=1;

此查询耗时约 40 毫秒。

这里我在 VIEW 上使用嵌套 SELECT 而不是 JOIN:

SELECT player_id, main_color FROM player_main_colors
    WHERE player_id IN (
        SELECT player_id FROM players WHERE user_id=1);

此查询也需要 ~40 毫秒。

当我将查询分成两部分时,它变得如我预期的那样快:

SELECT player_id FROM players WHERE user_id=1;

SELECT player_id, main_color FROM player_main_colors
    where player_id in (584, 9337, 11669, 12096, 13651,
        13852, 9575, 23388, 14339, 500, 24963, 25630,
        8974, 13048, 11904, 10537, 20362, 9216, 4747, 25045);

这些查询每次大约需要 0.5 毫秒。

那么,为什么上述带有 JOIN 或 sub-SELECT 的查询如此缓慢,我该如何解决?

以下是关于我的 table 和视图的一些详细信息:

CREATE TABLE users (
    user_id INTEGER PRIMARY KEY,
    ...
)

CREATE TABLE players (
    player_id INTEGER PRIMARY KEY,
    user_id INTEGER NOT NULL REFERENCES users (user_id),
    ...
)

CREATE TABLE player_data (
    player_id INTEGER NOT NULL REFERENCES players (player_id),
    game_id INTEGER NOT NULL,
    color INTEGER NOT NULL,
    PRIMARY KEY (player_id, game_id, color),
    active_time INTEGER DEFAULT 0,
    ...
)

CREATE VIEW player_main_colors AS
    SELECT DISTINCT ON (1) player_id, color as main_color
        FROM player_data
        GROUP BY player_id, color
        ORDER BY 1, MAX(active_time) DESC

看来一定是我的VIEW有问题...?

下面是对上面嵌套的 SELECT 查询的 EXPLAIN ANALYZE:

Merge Semi Join  (cost=1877.59..2118.00 rows=6851 width=8) (actual time=32.946..38.471 rows=25 loops=1)
   Merge Cond: (player_data.player_id = players.player_id)
   ->  Unique  (cost=1733.19..1801.70 rows=13701 width=12) (actual time=32.651..37.209 rows=13419 loops=1)
         ->  Sort  (cost=1733.19..1767.45 rows=13701 width=12) (actual time=32.646..34.918 rows=16989 loops=1)
               Sort Key: player_data.player_id, (max(player_data.active_time))
               Sort Method: external merge  Disk: 376kB
               ->  HashAggregate  (cost=654.79..791.80 rows=13701 width=12) (actual time=13.636..19.051 rows=17311 loops=1)
                     ->  Seq Scan on player_data  (cost=0.00..513.45 rows=18845 width=12) (actual time=0.005..1.801 rows=18845 loops=1)
   ->  Sort  (cost=144.40..144.53 rows=54 width=8) (actual time=0.226..0.230 rows=54 loops=1)
         Sort Key: players.player_id
         Sort Method: quicksort  Memory: 19kB
         ->  Bitmap Heap Scan on players  (cost=4.67..142.85 rows=54 width=8) (actual time=0.035..0.112 rows=54 loops=1)
               Recheck Cond: (user_id = 1)
               ->  Bitmap Index Scan on test  (cost=0.00..4.66 rows=54 width=0) (actual time=0.023..0.023 rows=54 loops=1)
                     Index Cond: (user_id = 1)
 Total runtime: 39.279 ms

至于索引,除了我的主键的默认索引之外,我只有 1 个相关索引:

CREATE INDEX player_user_idx ON players (user_id);

我目前使用的是 PostgreSQL 9.2.9。

更新:

我已经减少了下面的问题。查看 IN (4747) 和 IN (SELECT 4747) 之间的区别。

慢:

>> explain analyze SELECT * FROM (
          SELECT player_id, color 
            FROM player_data
            GROUP BY player_id, color
            ORDER BY MAX(active_time) DESC
       ) S
       WHERE player_id IN (SELECT 4747);

 Hash Join  (cost=1749.99..1975.37 rows=6914 width=8) (actual time=30.492..34.291 rows=4 loops=1)
   Hash Cond: (player_data.player_id = (4747))
   ->  Sort  (cost=1749.95..1784.51 rows=13827 width=12) (actual time=30.391..32.655 rows=17464 loops=1)
         Sort Key: (max(player_data.active_time))
         Sort Method: external merge  Disk: 376kB
         ->  HashAggregate  (cost=660.71..798.98 rows=13827 width=12) (actual time=12.714..17.249 rows=17464 loops=1)
               ->  Seq Scan on player_data  (cost=0.00..518.12 rows=19012 width=12) (actual time=0.006..1.898 rows=19012 loops=1)
   ->  Hash  (cost=0.03..0.03 rows=1 width=4) (actual time=0.007..0.007 rows=1 loops=1)
         Buckets: 1024  Batches: 1  Memory Usage: 1kB
         ->  HashAggregate  (cost=0.02..0.03 rows=1 width=4) (actual time=0.006..0.006 rows=1 loops=1)
               ->  Result  (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1)
 Total runtime: 35.015 ms
(12 rows)

Time: 35.617 ms

快:

>> explain analyze SELECT * FROM (
          SELECT player_id, color 
            FROM player_data
            GROUP BY player_id, color
            ORDER BY MAX(active_time) DESC
       ) S
       WHERE player_id IN (4747);

 Subquery Scan on s  (cost=17.40..17.45 rows=4 width=8) (actual time=0.035..0.035 rows=4 loops=1)
   ->  Sort  (cost=17.40..17.41 rows=4 width=12) (actual time=0.034..0.034 rows=4 loops=1)
         Sort Key: (max(player_data.active_time))
         Sort Method: quicksort  Memory: 17kB
         ->  GroupAggregate  (cost=0.00..17.36 rows=4 width=12) (actual time=0.020..0.027 rows=4 loops=1)
               ->  Index Scan using player_data_pkey on player_data  (cost=0.00..17.28 rows=5 width=12) (actual time=0.014..0.019 rows=5 loops=1)
                     Index Cond: (player_id = 4747)
 Total runtime: 0.080 ms
(8 rows)

Time: 0.610 ms

所以,出现这种行为的原因是查询规划器有局限性。在具体的bind param情况下,query planner能够根据它能看到和分析的query制定具体的计划。然而,当事情通过连接和子选择发生时,对将要发生的事情的可见性要低得多。它使优化器使用更多 "generic" 计划 - 在这种情况下速度明显较慢。

您的正确答案似乎是进行两项选择。也许更好的答案是将 "main_color" 非规范化到您的播放器 table 上并定期更新它。

您的 VIEW 定义中同时包含 GROUP BYDISTINCT ON。这就像开枪打死人。简化:

CREATE VIEW player_main_colors AS
SELECT DISTINCT ON (1)
       player_id, color AS main_color
FROM   player_data
ORDER  BY 1, active_time DESC NULLS LAST;

NULLS LAST 必须等同于您的原始内容,因为根据您的 table 定义,active_time 可以为 NULL。应该更快。但还有更多。为了获得最佳性能,请创建这些 indexes:

CREATE INDEX players_up_idx ON players (user_id, player_id);
CREATE INDEX players_data_pa_idx ON player_data
    (player_id, active_time DESC NULLS LAST, color);

也使用 DESC NULLS LAST in the index 来匹配查询的排序顺序。或者您将 player_data.active_time 更改为 NOT NULL 并简化所有内容。

顺便说一句,它是 LEFT OUTER JOIN 而不是 OUTER LEFT JOIN,或者只是省略干扰词 OUTER:

SELECT *  -- equivalent here to "p.*, c.main_color"
FROM   players p
LEFT   JOIN player_main_colors c USING (player_id)
WHERE  p.user_id = 1;

我假设每个 player_idplayer_data 中有 很多 行。而您只选择了几个player_idJOIN LATERAL 对于这种情况是最快的,但你需要 Postgres 9.3 或更高版本。在 pg 9.2 中,您可以使用 correlated subqueries:

实现类似的效果
CREATE VIEW player_main_colors AS
SELECT player_id
    , (SELECT color 
       FROM   player_data
       WHERE  player_id = p.player_id
       ORDER  BY active_time DESC NULLS LAST
       LIMIT  1) AS main_color
FROM   players p
ORDER  BY 1  -- optional

与您的原始观点有细微差别:这包括 player_data 中没有任何条目的玩家。您可以根据新视图尝试与上面相同的查询。但我 根本不会使用视图 。这可能是 最快的:

SELECT *
    , (SELECT color 
       FROM   player_data
       WHERE  player_id = p.player_id
       ORDER  BY active_time DESC NULLS LAST
       LIMIT  1) AS main_color
FROM   players p
WHERE  p.user_id = 1;

详细解释:

  • Optimize GROUP BY query to retrieve latest record per user