使用 "xlsx" 包读取时间戳时出错
Error reading timestamps using "xlsx" package
Excel 文件中的数据类似于
TIMESTAMP TYPE BID BIDSIZ
2015-01-04 09:00:00 BID 365 10
2015-04-01 09:00:05 BID 367.8 55
2015-04-01 09:00:33 BID 365 10
2015-04-01 09:00:36 BID 367.8 55
当我运行以下代码时:
require(xlsx)
f1<-read.xlsx2("Canara_Data.xlsx", sheetName = "BID")
f1$TIMESTAMP<-as.POSIXct(f1$TIMESTAMP, format="%Y-%M-%D %H:%M:S")
查看它会使 TIMESTAMP 看起来像
View(`f1`)
TIMESTAMP X. BID BIDSIZ
42008.375 BID 365 10
42095.37505787037 BID 367.8 55
42095.37538194445 BID 365 10
42095.37541666667 BID 367.8 55
str(f1)
# 'data.frame': 18214 obs. of 4 variables:
# $ TIMESTAMP: POSIXct, format: NA NA ...
# $ TYPE : Factor w/ 1 level "BID": 1 1 1 1 1 1 1 1 1 1 ...
# $ BID : Factor w/ 344 levels "365","365.1",..: 1 55 1 55 1 55 1 55 59 1 ...
# $ BIDSIZ : Factor w/ 1259 levels "1","10","100",..: 2 854 2 854 2 854 2 854 4 2
请帮助将 TIMESTAMP 读取为格式为“%Y-%M-%D %H:%M:S”的日期,并将 BID 和 BIDSIZ 读取为字符。
Excel & 日期格式通常不是一个好的组合。您可以使用:
f1$TIMESTAMP <- as.POSIXct(f1$TIMESTAMP*86400, origin="1899-12-30",tz="GMT")
将其转换为数据时间格式。
这给出:
> f1
TIMESTAMP X. BID BIDSIZ
1 2015-01-04 09:00:00 BID 365.0 10
2 2015-04-01 09:00:05 BID 367.8 55
3 2015-04-01 09:00:33 BID 365.0 10
4 2015-04-01 09:00:36 BID 367.8 55
另一个解决方案是将您的 excel 文件导出到 .csv
或制表符分隔的 .txt
文件,然后将其读入 R.
您可以将 BID
和 BIDSIZ
列转换为字符列:
f1[,c(3:4)] <- lapply(f1[,c(3:4)], as.character)
已用数据:
f1 <- structure(list(TIMESTAMP = c(42008.375, 42095.3750578704, 42095.3753819444, 42095.3754166667),
X. = structure(c(1L, 1L, 1L, 1L), .Label = "BID", class = "factor"),
BID = c(365, 367.8, 365, 367.8),
BIDSIZ = c(10L, 55L, 10L, 55L)),
.Names = c("TIMESTAMP", "X.", "BID", "BIDSIZ"), class = "data.frame", row.names = c(NA, -4L))
使用包readxl
excel_sheets("C:\Users\Gaurav Kumar\Documents\Canara_Data.xlsx")
grv<-read_excel("C:\Users\Gaurav Kumar\Documents\Canara_Data.xlsx", sheet = 1, col_names = TRUE, col_types = NULL, na = "", skip = 0)
它也会读取时间戳。它在将 excel 转换为 csv 时节省了大量时间,因为 CSV 在保存时间戳方面存在问题。
TIMESTAMP EX BID BIDSIZ
1 2015-04-01 09:00:00 N 365.00 10
2 2015-04-01 09:00:05 N 367.80 55
3 2015-04-01 09:00:33 N 365.00 10
4 2015-04-01 09:00:36 N 367.80 55
5 2015-04-01 09:00:41 N 365.00 10
6 2015-04-01 09:00:41 N 367.80 55
Excel 文件中的数据类似于
TIMESTAMP TYPE BID BIDSIZ
2015-01-04 09:00:00 BID 365 10
2015-04-01 09:00:05 BID 367.8 55
2015-04-01 09:00:33 BID 365 10
2015-04-01 09:00:36 BID 367.8 55
当我运行以下代码时:
require(xlsx)
f1<-read.xlsx2("Canara_Data.xlsx", sheetName = "BID")
f1$TIMESTAMP<-as.POSIXct(f1$TIMESTAMP, format="%Y-%M-%D %H:%M:S")
查看它会使 TIMESTAMP 看起来像
View(`f1`)
TIMESTAMP X. BID BIDSIZ
42008.375 BID 365 10
42095.37505787037 BID 367.8 55
42095.37538194445 BID 365 10
42095.37541666667 BID 367.8 55
str(f1)
# 'data.frame': 18214 obs. of 4 variables:
# $ TIMESTAMP: POSIXct, format: NA NA ...
# $ TYPE : Factor w/ 1 level "BID": 1 1 1 1 1 1 1 1 1 1 ...
# $ BID : Factor w/ 344 levels "365","365.1",..: 1 55 1 55 1 55 1 55 59 1 ...
# $ BIDSIZ : Factor w/ 1259 levels "1","10","100",..: 2 854 2 854 2 854 2 854 4 2
请帮助将 TIMESTAMP 读取为格式为“%Y-%M-%D %H:%M:S”的日期,并将 BID 和 BIDSIZ 读取为字符。
Excel & 日期格式通常不是一个好的组合。您可以使用:
f1$TIMESTAMP <- as.POSIXct(f1$TIMESTAMP*86400, origin="1899-12-30",tz="GMT")
将其转换为数据时间格式。
这给出:
> f1
TIMESTAMP X. BID BIDSIZ
1 2015-01-04 09:00:00 BID 365.0 10
2 2015-04-01 09:00:05 BID 367.8 55
3 2015-04-01 09:00:33 BID 365.0 10
4 2015-04-01 09:00:36 BID 367.8 55
另一个解决方案是将您的 excel 文件导出到 .csv
或制表符分隔的 .txt
文件,然后将其读入 R.
您可以将 BID
和 BIDSIZ
列转换为字符列:
f1[,c(3:4)] <- lapply(f1[,c(3:4)], as.character)
已用数据:
f1 <- structure(list(TIMESTAMP = c(42008.375, 42095.3750578704, 42095.3753819444, 42095.3754166667),
X. = structure(c(1L, 1L, 1L, 1L), .Label = "BID", class = "factor"),
BID = c(365, 367.8, 365, 367.8),
BIDSIZ = c(10L, 55L, 10L, 55L)),
.Names = c("TIMESTAMP", "X.", "BID", "BIDSIZ"), class = "data.frame", row.names = c(NA, -4L))
使用包readxl
excel_sheets("C:\Users\Gaurav Kumar\Documents\Canara_Data.xlsx")
grv<-read_excel("C:\Users\Gaurav Kumar\Documents\Canara_Data.xlsx", sheet = 1, col_names = TRUE, col_types = NULL, na = "", skip = 0)
它也会读取时间戳。它在将 excel 转换为 csv 时节省了大量时间,因为 CSV 在保存时间戳方面存在问题。
TIMESTAMP EX BID BIDSIZ
1 2015-04-01 09:00:00 N 365.00 10
2 2015-04-01 09:00:05 N 367.80 55
3 2015-04-01 09:00:33 N 365.00 10
4 2015-04-01 09:00:36 N 367.80 55
5 2015-04-01 09:00:41 N 365.00 10
6 2015-04-01 09:00:41 N 367.80 55