如何在 Android studio 中使用保存的神经 network.ser

How to use the saved neural network.ser in Android studio

我已经在 NetBeans 中训练了一个神经网络,并使用 Serializable 将其保存为 neural_network.ser,"all classes implement Serializable",现在我想在我的 android 应用程序中使用它,但是在加载时网络,ClassNotFoundException 引发。

java.lang.ClassNotFoundException: neural_network.BackPropagation

这是 Classes:

反向传播class:

public class BackPropagation extends  Thread  implements  Serializable
 {
   private static final String TAG = "NetworkMessage";
   private static final long serialVersionUID = -8862858027413741101L;
   private double   OverallError;
   // The minimum Error Function defined by the user
   private double   MinimumError;
   // The user-defined expected output pattern for a set of samples
   private double   ExpectedOutput[][];
   // The user-defined input pattern for a set of samples
   private double   Input[][];
   // User defined learning rate - used for updating the network weights
   private double   LearningRate;
   // Users defined momentum - used for updating the network weights
   private double   Momentum;
   // Number of layers in the network 
   private  int NumberOfLayers;
   // Number of training sets
   private  int NumberOfSamples;
   // Current training set/sample that is used to train network
   private  int SampleNumber;
   // Maximum number of Epochs before the traing stops training 
   private long MaximumNumberOfIterations;
   // Public Variables
   public LAYER Layer[];
   public  double   ActualOutput[][];
   long delay = 0;
   boolean die = false;
   // Calculate the node activations
   public void FeedForward()
    {
      int i,j;
      // Since no weights contribute to the output
      // vector from the input layer,
      // assign the input vector from the input layer
      // to all the node in the first hidden layer
      for (i = 0; i < Layer[0].Node.length; i++)
         Layer[0].Node[i].Output = Layer[0].Input[i];
      Layer[1].Input = Layer[0].Input;
      for (i = 1; i < NumberOfLayers; i++)
       {
         Layer[i].FeedForward();
         // Unless we have reached the last layer, assign the layer i's    //output vector
        // to the (i+1) layer's input vector
        if (i != NumberOfLayers-1)
            Layer[i+1].Input = Layer[i].OutputVector();
       }
  }
  // FeedForward()
  // Back propagated the network outputy error through
  // the network to update the weight values
public void UpdateWeights()
{
    CalculateSignalErrors();
    BackPropagateError();
}
 private void CalculateSignalErrors()
  {
    int i,j,k,OutputLayer;
    double Sum;
    OutputLayer = NumberOfLayers-1;
    // Calculate all output signal error
   for (i = 0; i < Layer[OutputLayer].Node.length; i++)
    { 
      Layer[OutputLayer].Node[i].SignalError =   
      (ExpectedOutput[SampleNumber][i] -Layer[OutputLayer].Node[i].Output) * 
      Layer[OutputLayer].Node[i].Output *  
      (1-Layer[OutputLayer].Node[i].Output);
    }
  // Calculate signal error for all nodes in the hidden layer
  // (back propagate the errors
 for (i = NumberOfLayers-2; i > 0; i--)
  {
    for (j = 0; j < Layer[i].Node.length; j++) 
     {
       Sum = 0;
       for (k = 0; k < Layer[i+1].Node.length; k++)
          Sum = Sum + Layer[i+1].Node[k].Weight[j] * 
          Layer[i+1].Node[k].SignalError;
       Layer[i].Node[j].SignalError = Layer[i].Node[j].Output*(1 -  
       Layer[i].Node[j].Output)*Sum;
     }
  }
}

private void BackPropagateError() 
 {
    int i,j,k;
    // Update Weights
    for (i = NumberOfLayers-1; i > 0; i--) 
      {
        for (j = 0; j < Layer[i].Node.length; j++) 
          {
            // Calculate Bias weight difference to node j
            Layer[i].Node[j].ThresholdDiff = LearningRate *
                    Layer[i].Node[j].SignalError +
                    Momentum*Layer[i].Node[j].ThresholdDiff;
            // Update Bias weight to node j
            Layer[i].Node[j].Threshold =
                    Layer[i].Node[j].Threshold +
                            Layer[i].Node[j].ThresholdDiff;
             // Update Weights
            for (k = 0; k < Layer[i].Input.length; k++) 
               {
                 // Calculate weight difference between node j and k
                 Layer[i].Node[j].WeightDiff[k] =
                         LearningRate *
                         Layer[i].Node[j].SignalError*Layer[i-
                         1].Node[k].Output +
                         Momentum*Layer[i].Node[j].WeightDiff[k];
                 // Update weight between node j and k
                 Layer[i].Node[j].Weight[k] =
                        Layer[i].Node[j].Weight[k] + 
                        Layer[i].Node[j].WeightDiff[k];
               }
          }
       }
  }
private void CalculateOverallError()
 {
    int i,j;
    OverallError = 0;
    for (i = 0; i < NumberOfSamples; i++)
        for (j = 0; j < Layer[NumberOfLayers-1].Node.length; j++)
         {
            OverallError = OverallError +
                    0.5*( Math.pow(ExpectedOutput[i][j] - ActualOutput[i] 
                                                                   [j],2) );
        }
}
 public  BackPropagation(int NumberOfNodes[],
                        double InputSamples[][],
                        double OutputSamples[][],
                        double LearnRate,
                        double Moment,
                        double MinError,
                        long MaxIter
                        )
  {
    int i,j;
 // Initiate variables
    NumberOfSamples = InputSamples.length;
    MinimumError = MinError;
    LearningRate = LearnRate;
    Momentum = Moment;
    NumberOfLayers = NumberOfNodes.length;
    MaximumNumberOfIterations = MaxIter;
 // Create network layers
    Layer = new LAYER[NumberOfLayers];
 // Assign the number of node to the input layer
    Layer[0] = new LAYER(NumberOfNodes[0],NumberOfNodes[0]);
 // Assign number of nodes to each layer
    for (i = 1; i < NumberOfLayers; i++)
        Layer[i] = new LAYER(NumberOfNodes[i],NumberOfNodes[i-1]);
    Input = new double[NumberOfSamples][Layer[0].Node.length];
    ExpectedOutput = new double[NumberOfSamples][Layer[NumberOfLayers-
    1].Node.length];
    ActualOutput = new double[NumberOfSamples][Layer[NumberOfLayers-
   1].Node.length];
    // Assign input set
    for (i = 0; i < NumberOfSamples; i++)
        for (j = 0; j < Layer[0].Node.length; j++)
            Input[i][j] = InputSamples[i][j];
    // Assign output set
    for (i = 0; i < NumberOfSamples; i++)
        for (j = 0; j < Layer[NumberOfLayers-1].Node.length; j++)
            ExpectedOutput[i][j] = OutputSamples[i][j];
} 
 public void TrainNetwork() 
  {
   int i,j;
   long k=0;
   do
    {
      // For each pattern
      for (SampleNumber = 0; SampleNumber < NumberOfSamples; SampleNumber++) 
      {
          for (i = 0; i < Layer[0].Node.length; i++)
              Layer[0].Input[i] = Input[SampleNumber][i];
          FeedForward();
        // Assign calculated output vector from network to ActualOutput
          for (i = 0; i < Layer[NumberOfLayers-1].Node.length; i++)
              ActualOutput[SampleNumber][i] = Layer[NumberOfLayers-
             1].Node[i].Output;
          UpdateWeights();
          // if we've been told to stop training, then
          // stop thread execution
          if (die){
              return;
          }
          // if
      }
      k++;
     // Calculate Error Function
      CalculateOverallError();
      System.out.println("OverallError = 
      "+Double.toString(OverallError)+"\n");
      System.out.print("Epoch = "+Long.toString(k)+"\n");
  } while ((OverallError > MinimumError) &&(k < MaximumNumberOfIterations));
}
  public LAYER[] get_layers() { return Layer; }
  // called when testing the network.
  public double[] test(double[] input) 
   {
     int winner = 0;
     NODE[] output_nodes;
     for (int j = 0; j < Layer[0].Node.length; j++)
     { Layer[0].Input[j] = input[j];}
     FeedForward();
     // get the last layer of nodes (the outputs)
     output_nodes = (Layer[Layer.length - 1]).get_nodes();
     double[] actual_output  = new double[output_nodes.length];
     for (int k=0; k < output_nodes.length; k++)
      {
        actual_output[k]=output_nodes[k].Output;
      } // for
    return actual_output;
 }//test()
  public double get_error() 
  {
     CalculateOverallError(); 
     return OverallError;
  } // get_error()
// to change the delay in the network
 public void set_delay(long time) 
  {
    if (time >= 0) {
        delay = time;
    } // if
}
//save the trained network
public void save(String FileName)
{
    try{


       FileOutputStream fos = new FileOutputStream (new File(FileName), true);
       // Serialize data object to a file
        ObjectOutputStream os = new ObjectOutputStream(fos);
        os.writeObject(this);
        os.close();
        fos.close();
        System.out.println("Network Saved!!!!");
    }
    catch (IOException E){System.out.println(E.toString());}
    catch (Exception e){System.out.println(e.toString());}
}


public  BackPropagation load(String FileName)
{

    BackPropagation myclass= null;
    try
    {

        //File patternDirectory = new File(Environment.getExternalStorageDirectory().getAbsolutePath().toString()+"INDIAN_NUMBER_RECOGNITION.data");
        //patternDirectory.mkdirs();
        FileInputStream fis = new FileInputStream(new File(FileName));
        //FileInputStream fis =context.openFileInput(FileName);
        ObjectInputStream is = new ObjectInputStream(fis);
        myclass = (BackPropagation) is.readObject();
        System.out.println("Error After Reading = "+Double.toString(myclass.get_error())+"\n");
        is.close();
        fis.close();
        return myclass;


    }
    catch (Exception e){System.out.println(e.toString());}
    return myclass;
}

// needed to implement threading.
public void run() {
    TrainNetwork();
    File Net_File = new File(Environment.getExternalStorageDirectory(),"Number_Recognition_1.ser");
    save(Net_File.getAbsolutePath());
    System.out.println( "DONE TRAINING :) ^_^ ^_^ :) !\n");
    System.out.println("With Network ERROR = "+Double.toString(get_error())+"\n");
} // run()


// to notify the network to stop training.
public void kill() { die = true; }

}

图层Class:

public class LAYER implements Serializable
{
  private   double  Net;
  public    double  Input[];
  // Vector of inputs signals from previous
  // layer to the current layer
  public    NODE    Node[];
  // Vector of nodes in current layer
  // The FeedForward function is called so that
  // the outputs for all the nodes in the current
  // layer are calculated
public void FeedForward() {
    for (int i = 0; i < Node.length; i++) {
        Net = Node[i].Threshold;

        for (int j = 0; j < Node[i].Weight.length; j++)
        {Net = Net + Input[j] * Node[i].Weight[j];
            System.out.println("Net = "+Double.toString(Net)+"\n");
        }

        Node[i].Output = Sigmoid(Net);
        System.out.println("Node["+Integer.toString(i)+".Output = "+Double.toString(Node[i].Output)+"\n");
    }
}

// The Sigmoid function calculates the
// activation/output from the current node
private double Sigmoid (double Net) {
    return 1/(1+Math.exp(-Net));
}

// Return the output from all node in the layer
// in a vector form
public double[] OutputVector() {

    double Vector[];

    Vector = new double[Node.length];

    for (int i=0; i < Node.length; i++)
        Vector[i] = Node[i].Output;

    return (Vector);
}
public LAYER (int NumberOfNodes, int NumberOfInputs) {
    Node = new NODE[NumberOfNodes];

    for (int i = 0; i < NumberOfNodes; i++)
        Node[i] = new NODE(NumberOfInputs);

    Input = new double[NumberOfInputs];
}

// added by DSK
public NODE[] get_nodes() { return Node; }
}

节点Class:

 public class NODE implements  Serializable
{
  public    double  Output;
  // Output signal from current node
  public    double  Weight[];
  // Vector of weights from previous nodes to current node
  public    double  Threshold;
  // Node Threshold /Bias
  public    double  WeightDiff[];
  // Weight difference between the nth and the (n-1) iteration
  public    double  ThresholdDiff;
  // Threshold difference between the nth and the (n-1) iteration
  public    double  SignalError;
  // Output signal error
  // InitialiseWeights function assigns a randomly
  // generated number, between -1 and 1, to the
  // Threshold and Weights to the current node
  private void InitialiseWeights() {
    Threshold = -1+2*Math.random();
    // Initialise threshold nodes with a random
    // number between -1 and 1
    ThresholdDiff = 0;
    // Initially, ThresholdDiff is assigned to 0 so
    // that the Momentum term can work during the 1st
    // iteration
    for(int i = 0; i < Weight.length; i++) {
        Weight[i]= -1+2*Math.random();
        // Initialise all weight inputs with a
        // random number between -1 and 1
        WeightDiff[i] = 0;
        // Initially, WeightDiff is assigned to 0
        // so that the Momentum term can work during
        // the 1st iteration
    }
}

public NODE (int NumberOfNodes) {
    Weight = new double[NumberOfNodes];
    // Create an array of Weight with the same
    // size as the vector of inputs to the node

    WeightDiff = new double[NumberOfNodes];
    // Create an array of weightDiff with the same
    // size as the vector of inputs to the node

    InitialiseWeights();
    // Initialise the Weights and Thresholds to the node
}


public double[] get_weights() { return Weight; }
public double get_output() { return Output; }
}

我在Netbeans中的代码是这样写的,但是文件保存的方式不同!

如何才能正确加载文件,以免出现此异常?

我通过将网络保存到 XML 文件然后在 android 中再次加载它来解决这个问题所以只花了两个小时的训练而不是几天没有任何序列化问题,虽然它花了一些时间是时候加载那个 XML 我再次将它序列化为 neural_network.ser 所以它会加载得更快

我知道这不是最好的解决方案,但我已经做到了。

这是代码:

  public void SaveToXML(String FileName)throws     
       ParserConfigurationException,     FileNotFoundException,  
        TransformerException, TransformerConfigurationException
     {
  DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
    DocumentBuilder parser = factory.newDocumentBuilder();
    Document doc = parser.newDocument();
    Element root = doc.createElement("neuralNetwork");
    Element layers = doc.createElement("structure");
    layers.setAttribute("numberOfLayers",Integer.toString(this.NumberOfLayers));
    for (int il=0; il<this.NumberOfLayers; il++){
        Element layer = doc.createElement("layer");
        layer.setAttribute("index",Integer.toString(il));
        layer.setAttribute("numberOfNeurons",Integer.toString(this.Layer[il].Node.length));
        if(il==0)
        {
            for(int in=0;in<this.Layer[il].Node.length;in++)
            {
                 Element neuron = doc.createElement("neuron");
                 neuron.setAttribute("index",Integer.toString(in));
                 neuron.setAttribute("NumberOfInputs",Integer.toString(1));
                 neuron.setAttribute("threshold",Double.toString(this.Layer[il].Node[in].Threshold));
                 Element input = doc.createElement("input");
                 double[] weights = this.Layer[il].Node[in].get_weights();
                 input.setAttribute("index",Integer.toString(in));
                input.setAttribute("weight",Double.toString(weights[in]));
                neuron.appendChild(input);
                layer.appendChild(neuron);
            }
            layers.appendChild(layer);

        }
        else
        {
         for (int in=0; in<this.Layer[il].Node.length;in++){
              Element neuron = doc.createElement("neuron");
            neuron.setAttribute("index",Integer.toString(in));
            neuron.setAttribute("NumberOfInputs",Integer.toString(this.Layer[il].Node[in].Weight.length));
            neuron.setAttribute("threshold",Double.toString(this.Layer[il].Node[in].Threshold));
            for (int ii=0; ii<this.Layer[il].Node[in].Weight.length;ii++) {
                 double[] weights = this.Layer[il].Node[in].get_weights();
                Element input = doc.createElement("input");
                input.setAttribute("index",Integer.toString(ii));
                input.setAttribute("weight",Double.toString(weights[ii]));
                 neuron.appendChild(input);                    
            }
            layer.appendChild(neuron);
            layers.appendChild(layer);
         }
    }
    }
    root.appendChild(layers);
    doc.appendChild(root);
    File xmlOutputFile = new File(FileName);
    FileOutputStream fos;
    Transformer transformer;
    fos = new FileOutputStream(xmlOutputFile);
    TransformerFactory transformerFactory = TransformerFactory.newInstance();
    transformer = transformerFactory.newTransformer();
    DOMSource source = new DOMSource(doc);
    StreamResult result = new StreamResult(fos);
    transformer.setOutputProperty("encoding","iso-8859-2");
    transformer.setOutputProperty("indent","yes");
    transformer.transform(source, result);

    }

LoadFromXML 函数:

   public  BackPropagation LoadFromXML(String FileName)throws 
     ParserConfigurationException, SAXException, IOException, ParseException 
    {
    BackPropagation myclass= new BackPropagation();
     DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
    DocumentBuilder parser = factory.newDocumentBuilder();
    File source = new File(FileName);
    Document doc = parser.parse(source);

    Node nodeNeuralNetwork = doc.getDocumentElement();
    if (!nodeNeuralNetwork.getNodeName().equals("neuralNetwork")) throw new ParseException("[Error] NN-Load: Parse error in XML file, neural network couldn't be loaded.",0);
    NodeList nodeNeuralNetworkContent = nodeNeuralNetwork.getChildNodes();
    System.out.print("<neuralNetwork>\n");
    for (int innc=0; innc<nodeNeuralNetworkContent.getLength(); innc++) 
    {
        Node nodeStructure = nodeNeuralNetworkContent.item(innc);
        if (nodeStructure.getNodeName().equals("structure")) 
        { 
            System.out.print("<stucture nuumberOfLayers = ");
            myclass.NumberOfLayers = Integer.parseInt(((Element)nodeStructure).getAttribute("numberOfLayers"));
            myclass.Layer  = new LAYER[myclass.NumberOfLayers];
            System.out.print(Integer.toString(myclass.NumberOfLayers)+">\n");
            NodeList nodeStructureContent = nodeStructure.getChildNodes();
             for (int isc=0; isc<nodeStructureContent.getLength();isc++)
             {
                 Node nodeLayer = nodeStructureContent.item(isc);

                 if (nodeLayer.getNodeName().equals("layer"))
                 {
                     int index = Integer.parseInt(((Element)nodeLayer).getAttribute("index"));
                     System.out.print("<layer index = "+Integer.toString(index)+" numberOfNeurons = ");
                     int number_of_N = Integer.parseInt(((Element)nodeLayer).getAttribute("numberOfNeurons"));
                     System.out.print(Integer.toString(number_of_N)+">\n");
                     if(index==0)
                     {
                         myclass.Layer[0]=new LAYER(number_of_N,800);

                     }
                     else
                     {
                         int j=index-1;
                         myclass.Layer[index]=new LAYER(number_of_N,myclass.Layer[j].Node.length);
                     }
                     NodeList nodeLayerContent = nodeLayer.getChildNodes();
                      for (int ilc=0; ilc<nodeLayerContent.getLength();ilc++)
                      {
                           Node nodeNeuron = nodeLayerContent.item(ilc);
                            if (nodeNeuron.getNodeName().equals("neuron"))
                            {
                                System.out.print("<neuron index = ");
                                int neuron_index = Integer.parseInt(((Element)nodeNeuron).getAttribute("index"));
                                myclass.Layer[index].Node[neuron_index].Threshold = Double.parseDouble(((Element)nodeNeuron).getAttribute("threshold"));
                                System.out.print(Integer.toString(neuron_index)+" threshold = "+Double.toString(myclass.Layer[index].Node[neuron_index].Threshold)+">\n");
                                NodeList nodeNeuronContent = nodeNeuron.getChildNodes();
                                  for (int inc=0; inc < nodeNeuronContent.getLength();inc++)
                                  {
                                      Node nodeNeuralInput = nodeNeuronContent.item(inc);                                    
                                      if (nodeNeuralInput.getNodeName().equals("input"))
                                      {
                                          System.out.print("<input index = ");
                                          int index_input = Integer.parseInt(((Element)nodeNeuralInput).getAttribute("index"));
                                          myclass.Layer[index].Node[neuron_index].Weight[index_input] = Double.parseDouble(((Element)nodeNeuralInput).getAttribute("weight"));
                                          System.out.print(Integer.toString(index_input)+" weight = "+Double.toString(myclass.Layer[index].Node[neuron_index].Weight[index_input])+">\n");
                                      }
                                  }
                            }
                      }


                 }
             }
             System.out.print("</structure");

        }
    }


   return myclass;
 }