如何通过广播将 pandas 数据帧与 numpy 数组相乘
how to multiply pandas dataframe with numpy array with broadcasting
我有一个形状为 (4, 3) 的数据框,如下所示:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: x = pd.DataFrame(np.random.randn(4, 3), index=np.arange(4))
In [4]: x
Out[4]:
0 1 2
0 0.959322 0.099360 1.116337
1 -0.211405 -2.563658 -0.561851
2 0.616312 -1.643927 -0.483673
3 0.235971 0.023823 1.146727
我想将数据帧的每一列乘以形状为 (4,) 的 numpy 数组:
In [9]: y = np.random.randn(4)
In [10]: y
Out[10]: array([-0.34125522, 1.21567883, -0.12909408, 0.64727577])
在 numpy 中,以下广播技巧有效:
In [12]: x.values * y[:, None]
Out[12]:
array([[-0.32737369, -0.03390716, -0.38095588],
[-0.25700028, -3.11658448, -0.68303043],
[-0.07956223, 0.21222123, 0.06243928],
[ 0.15273815, 0.01541983, 0.74224861]])
但是,它在 pandas 数据帧的情况下不起作用,我收到以下错误:
In [13]: x * y[:, None]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-13-21d033742c49> in <module>()
----> 1 x * y[:, None]
...
ValueError: Shape of passed values is (1, 4), indices imply (3, 4)
有什么建议吗?
谢谢!
我认为你最好使用 df.apply() 方法。你的情况:
x.apply(lambda x: x * y)
我找到了一种在 pandas 数据帧和 numpy 数组之间进行乘法的替代方法。
In [14]: x.multiply(y, axis=0)
Out[14]:
0 1 2
0 0.195346 0.443061 1.219465
1 0.194664 0.242829 0.180010
2 0.803349 0.091412 0.098843
3 0.365711 -0.388115 0.018941
我有一个形状为 (4, 3) 的数据框,如下所示:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: x = pd.DataFrame(np.random.randn(4, 3), index=np.arange(4))
In [4]: x
Out[4]:
0 1 2
0 0.959322 0.099360 1.116337
1 -0.211405 -2.563658 -0.561851
2 0.616312 -1.643927 -0.483673
3 0.235971 0.023823 1.146727
我想将数据帧的每一列乘以形状为 (4,) 的 numpy 数组:
In [9]: y = np.random.randn(4)
In [10]: y
Out[10]: array([-0.34125522, 1.21567883, -0.12909408, 0.64727577])
在 numpy 中,以下广播技巧有效:
In [12]: x.values * y[:, None]
Out[12]:
array([[-0.32737369, -0.03390716, -0.38095588],
[-0.25700028, -3.11658448, -0.68303043],
[-0.07956223, 0.21222123, 0.06243928],
[ 0.15273815, 0.01541983, 0.74224861]])
但是,它在 pandas 数据帧的情况下不起作用,我收到以下错误:
In [13]: x * y[:, None]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-13-21d033742c49> in <module>()
----> 1 x * y[:, None]
...
ValueError: Shape of passed values is (1, 4), indices imply (3, 4)
有什么建议吗?
谢谢!
我认为你最好使用 df.apply() 方法。你的情况:
x.apply(lambda x: x * y)
我找到了一种在 pandas 数据帧和 numpy 数组之间进行乘法的替代方法。
In [14]: x.multiply(y, axis=0)
Out[14]:
0 1 2
0 0.195346 0.443061 1.219465
1 0.194664 0.242829 0.180010
2 0.803349 0.091412 0.098843
3 0.365711 -0.388115 0.018941