将 3d 对象与相机位置对齐
Align 3d Object to Camera position
我正在使用 Viewport
控件在 AB4D PowerToys 的帮助下可视化 3d 工具模型。
目前我正在尝试将我的 3D 文本(一组线条)与 camera
对齐,因此它总是旋转到相机并看起来像 2D 文本。
是否可以将我的视觉转换绑定到我的相机位置?
终于自己找到了答案:
应在 "CameraChanged" 事件中调用以下代码。
private void UpdateTransforms()
{
if (!this.IsAttachedToViewport3D())
{
return;
}
Matrix3D view, projection;
if (Camera.GetCameraMatrixes(out view, out projection))
{
Vector3D up = new Vector3D(view.M12, view.M22, view.M32);
Vector3D look = new Vector3D(view.M13, view.M23, view.M33);
Transform3D transform = Transform;
Matrix3D inverseWorld = this.GetTransform();
inverseWorld.Invert();
look = inverseWorld.Transform(look);
look.Normalize();
up = inverseWorld.Transform(up);
up.Normalize();
Quaternion q = LookAtRotation(look, up);
Transform3DGroup grp = new Transform3DGroup();
grp.Children.Add(new RotateTransform3D(new QuaternionRotation3D(q), CenterPosition));
grp.Children.Add(transform);
Transform = grp;
Camera.Refresh();
}
}
private static Quaternion LookAtRotation(Vector3D lookAt, Vector3D upDirection)
{
Vector3D forward = lookAt;
Vector3D up = upDirection;
// Orthonormalize
forward.Normalize();
up -= forward * Vector3D.DotProduct(up, forward);
up.Normalize();
Vector3D right = Vector3D.CrossProduct(up, forward);
Quaternion q = new Quaternion
{
W = Math.Sqrt(1.0 + right.X + up.Y + forward.Z) * 0.5
};
double w4Recip = 1.0 / (4.0 * q.W);
q.X = (up.Z - forward.Y) * w4Recip;
q.Y = (forward.X - right.Z) * w4Recip;
q.Z = (right.Y - up.X) * w4Recip;
return q;
}
我正在使用 Viewport
控件在 AB4D PowerToys 的帮助下可视化 3d 工具模型。
目前我正在尝试将我的 3D 文本(一组线条)与 camera
对齐,因此它总是旋转到相机并看起来像 2D 文本。
是否可以将我的视觉转换绑定到我的相机位置?
终于自己找到了答案:
应在 "CameraChanged" 事件中调用以下代码。
private void UpdateTransforms()
{
if (!this.IsAttachedToViewport3D())
{
return;
}
Matrix3D view, projection;
if (Camera.GetCameraMatrixes(out view, out projection))
{
Vector3D up = new Vector3D(view.M12, view.M22, view.M32);
Vector3D look = new Vector3D(view.M13, view.M23, view.M33);
Transform3D transform = Transform;
Matrix3D inverseWorld = this.GetTransform();
inverseWorld.Invert();
look = inverseWorld.Transform(look);
look.Normalize();
up = inverseWorld.Transform(up);
up.Normalize();
Quaternion q = LookAtRotation(look, up);
Transform3DGroup grp = new Transform3DGroup();
grp.Children.Add(new RotateTransform3D(new QuaternionRotation3D(q), CenterPosition));
grp.Children.Add(transform);
Transform = grp;
Camera.Refresh();
}
}
private static Quaternion LookAtRotation(Vector3D lookAt, Vector3D upDirection)
{
Vector3D forward = lookAt;
Vector3D up = upDirection;
// Orthonormalize
forward.Normalize();
up -= forward * Vector3D.DotProduct(up, forward);
up.Normalize();
Vector3D right = Vector3D.CrossProduct(up, forward);
Quaternion q = new Quaternion
{
W = Math.Sqrt(1.0 + right.X + up.Y + forward.Z) * 0.5
};
double w4Recip = 1.0 / (4.0 * q.W);
q.X = (up.Z - forward.Y) * w4Recip;
q.Y = (forward.X - right.Z) * w4Recip;
q.Z = (right.Y - up.X) * w4Recip;
return q;
}