R:日期之间的天数顺序

R: sequence of days between dates

我有以下数据框:

AllDays  
2012-01-01  
2012-01-02  
2012-01-03  
...  
2015-08-18  

Leases 
StartDate  EndDate
2012-01-01 2013-01-01  
2012-05-07 2013-05-06  
2013-09-05 2013-12-01   

我想要做的是,对于 allDays 数据框中的每个日期,计算有效的租约数量。例如如果有 4 个开始日期 <= 2015-01-01 和结束日期 >= 2015-01-01 的租约,那么我想在该数据框中放置一个 4。

我有以下代码

  for (i in 1:nrow(leases))
  {
    occupied = seq(leases$StartDate[i],leases$EndDate[i],by="days")
    occupied = occupied[occupied < dateOfInt]
    matching = match(occupied,allDays$Date)
    allDays$Occupancy[matching] = allDays$Occupancy[matching] + 1
  }

有效,但由于我有大约 5000 个租约,因此大约需要 1.1 秒。有没有人有更有效的方法需要更少的计算时间? 利息日期只是当前日期,仅用于确保它不计算未来的租赁日期。

使用 seq 几乎肯定是低效的——假设您的数据租期长达 10000 年。 seq 将永远花费 return 10000*365-1 天,这对我们来说无关紧要。然后我们必须使用 %in% 这也会进行相同数量的不必要的比较。

我不确定以下是最好的方法(我相信有一个完全矢量化的解决方案)但它更接近问题的核心。

数据

set.seed(102349)
days<-data.frame(AllDays=seq(as.Date("2012-01-01"),
                             as.Date("2015-08-18"),"day"))

leases<-data.frame(StartDate=sample(days$AllDays,5000L,T))
leases$EndDate<-leases$StartDate+round(rnorm(5000,mean=365,sd=100))

方法

使用data.tablesapply:

library(data.table)
setDT(leases); setDT(days)

days[,lease_count:=
       sapply(AllDays,function(x)
         leases[StartDate<=x&EndDate>=x,.N])][]
         AllDays lease_count
   1: 2012-01-01           5
   2: 2012-01-02           8
   3: 2012-01-03          11
   4: 2012-01-04          16
   5: 2012-01-05          18
  ---                       
1322: 2015-08-14        1358
1323: 2015-08-15        1358
1324: 2015-08-16        1360
1325: 2015-08-17        1363
1326: 2015-08-18        1359

另一种方法,但我不确定它是否更快。

library(lubridate)
library(dplyr)

AllDays = data.frame(dates = c("2012-02-01","2012-03-02","2012-04-03"))

Lease = data.frame(start = c("2012-01-03","2012-03-01","2012-04-02"),
                   end = c("2012-02-05","2012-04-15","2012-07-11"))

# transform to dates
AllDays$dates = ymd(AllDays$dates)
Lease$start = ymd(Lease$start)
Lease$end = ymd(Lease$end)

# create the range id
Lease$id = 1:nrow(Lease)

AllDays

#        dates
# 1 2012-02-01
# 2 2012-03-02
# 3 2012-04-03

Lease

#       start        end id
# 1 2012-01-03 2012-02-05  1
# 2 2012-03-01 2012-04-15  2
# 3 2012-04-02 2012-07-11  3


data.frame(expand.grid(AllDays$dates,Lease$id)) %>%      # create combinations of dates and ranges
  select(dates=Var1, id=Var2) %>%
  inner_join(Lease, by="id") %>%                         # join information
  rowwise %>%
  do(data.frame(dates=.$dates,
                flag = ifelse(.$dates %in% seq(.$start,.$end,by="1 day"),1,0))) %>%     # create ranges and check if the date is in there
  ungroup %>%
  group_by(dates) %>%
  summarise(N=sum(flag))

#        dates N
# 1 2012-02-01 1
# 2 2012-03-02 1
# 3 2012-04-03 2

试试 lubridate 包。为每个租约创建一个间隔。然后统计每个日期所在的租约间隔。

# make some data
AllDays <- data.frame("Days" = seq.Date(as.Date("2012-01-01"), as.Date("2012-02-01"), by = 1))
Leases <- data.frame("StartDate" = as.Date(c("2012-01-01", "2012-01-08")),
                 "EndDate" = as.Date(c("2012-01-10", "2012-01-21")))
library(lubridate)

x <- new_interval(Leases$StartDate, Leases$EndDate, tzone = "UTC")
AllDays$NumberInEffect <- sapply(AllDays$Days, function(a){sum(a %within% x)})

输出

head(AllDays)
        Days NumberInEffect
1 2012-01-01              1
2 2012-01-02              1
3 2012-01-03              1
4 2012-01-04              1
5 2012-01-05              1
6 2012-01-06              1

没有你的数据,我无法测试这是否更快,但它可以用更少的代码完成工作:

for (i in 1:nrow(AllDays)) AllDays$tally[i] = sum(AllDays$AllDays[i] >= Leases$Start.Date & AllDays$AllDays[i] <= Leases$End.Date)

我用下面的来测试它;请注意,两个数据框中的相关列都被格式化为日期:

AllDays = data.frame(AllDays = seq(from=as.Date("2012-01-01"), to=as.Date("2015-08-18"), by=1))
Leases = data.frame(Start.Date = as.Date(c("2013-01-01", "2012-08-20", "2014-06-01")), End.Date = as.Date(c("2013-12-31", "2014-12-31", "2015-05-31")))

这正是 foverlaps 的亮点所在:根据另一个 data.frame 对 data.frame 进行子集化(foverlaps 似乎是为此目的量身定制的)。

基于@MichaelChirico 的数据。

setkey(days[, AllDays1:=AllDays,], AllDays, AllDays1)
setkey(leases, StartDate, EndDate)
foverlaps(leases, days)[, .(lease_count=.N), AllDays]
#   user  system elapsed 
#  0.114   0.018   0.136
# @MichaelChirico's approach
#   user  system elapsed 
#  0.909   0.000   0.907 

Here 是@Arun 对它如何工作的简要解释,这让我开始使用 data.table