射线-三角形相交 C++
Ray-Triangle Intersection C++
我正在测试射线是否与三角形相交。目前,我正在使用以下代码来测试三角形与从原点到三角形中点的射线之间是否存在交点:
Ray<float> *ray = new Ray<float>(Vec3<float>(0), chosenTriangle->GetTriangleMidpoint());
旁边是我用来存储矢量运算的 Vec3
对象:
template<typename T>
class Vec3
{
public:
T x, y, z;
Vec3() : x(T(0)), y(T(0)), z(T(0)) { }
Vec3(T xx) : x(xx), y(xx), z(xx) { }
Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
Vec3& normalize()
{
T nor2 = length2();
if (nor2 > 0) {
T invNor = 1 / sqrt(nor2);
x *= invNor, y *= invNor, z *= invNor;
}
return *this;
}
Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
bool operator == (const Vec3<T> &v) { return x == v.x && y == v.y && z == v.z; }
Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
T length2() const { return x * x + y * y + z * z; }
T length() const { return sqrt(length2()); }
Vec3<T> CrossProduct(Vec3<T> other)
{
return Vec3<T>(y*other.z - other.y*z, x*other.z - z*other.x, x*other.y - y*other.x);
}
friend std::ostream & operator << (std::ostream &os, const Vec3<T> &v)
{
os << "[" << v.x << " " << v.y << " " << v.z << "]";
return os;
}
选择的三角形和射线具有以下值,其中vertA
、vertB
和vertC
是三角形的顶点,在代表三角形的对象中找到.
计算指定射线与交点之间是否存在交点的代码如下。此代码位于三角形对象方法中,其中 vertA
、vertB
和 vertC
是全局变量。
bool CheckRayIntersection(Vec3<T> &o, Vec3<T> &d)
{
Vec3<T> e1 = vertB - vertA;
Vec3<T> e2 = vertC - vertA;
Vec3<T> p = d.CrossProduct(e2);
T a = e1.dot(p);
if(a == 0)
return false;
float f = 1.0f/a;
Vec3<T> s = o - vertA;
T u = f * s.dot(p);
if(u < 0.0f || u > 1.0f)
return false;
Vec3<T> q = s.CrossProduct(e1);
T v = f * d.dot(q);
if(v < 0.0f || u+v > 1.0f)
return false;
T t = f * e2.dot(q);
return (t >= 0);
}
我仍然从函数中得到一个错误的 returned,但我假设它应该 return 为真,因为通过三角形中点的矢量应该与三角形相交于中点。谁能告诉我我的代码有什么问题?或者 returned false 实际上是正确的吗?
根据您的数据,我通过对光线方向进行归一化(这是代码中唯一明显的变化)设法获得了一致的结果。
下面是代码实现(参考了论文,优化的不是很好):
struct quickVect
{
float x,y,z;
float l;
};
#define DOT(v1,v2) (v1.x*v2.x + v1.y*v2.y+v1.z*v2.z)
#define CROSS(rez,v1,v2) \
rez.x = v1.y*v2.z - v1.z*v2.y; \
rez.y = v1.z*v2.x - v1.x*v2.z; \
rez.z = v1.x*v2.y - v1.y*v2.x;
#define SUB(rez,v1,v2) \
rez.x = v1.x-v2.x; \
rez.y = v1.y-v2.y; \
rez.z = v1.z-v2.z;
#define LENGTH(v) (sqrtf(v.x* v.x + v.y*v.y + v.z*v.z))
#define NORMALIZE(v) \
v.l = LENGTH(v); \
v.x = v.x / v.l; \
v.y = v.y / v.l; \
v.z = v.z / v.l;
#define EPSILON 0.000001f
//#define TEST_CULL
bool testIntersection(quickVect& v1, quickVect& v2, quickVect& v3, quickVect& orig,quickVect& dir)
{
quickVect e1,e2,pvec,qvec,tvec;
SUB(e1,v2,v1);
SUB(e2,v3,v1);
CROSS(pvec,dir,e2);
NORMALIZE(dir);
//NORMALIZE(pvec);
float det = DOT(pvec,e1);
#ifdef TEST_CULL
if (det <EPSILON)
{
return false;
}
SUB(tvec,orig,v1);
float u = DOT(tvec,pvec);
if (u < 0.0 || u > det)
{
return false;
}
CROSS(qvec,tvec,e1);
float v = DOT(dir,qvec);
if (v < 0.0f || v + u > det)
{
return false;
}
#else
if (det < EPSILON && det > -EPSILON )
{
return false;
}
float invDet = 1.0f / det;
SUB(tvec,orig,v1);
// NORMALIZE(tvec);
float u = invDet * DOT(tvec,pvec);
if (u <0.0f || u > 1.0f)
{
return false;
}
CROSS(qvec,tvec,e1);
// NORMALIZE(qvec);
float v = invDet* DOT(qvec,dir);
if (v < 0.0f || u+v > 1.0f)
{
return false;
}
#endif
return true;
}
直接翻译 MichaelCMS 的答案以与 glm 一起使用。
// must normalize direction of ray
bool intersectRayTri(Tri& tri, glm::vec3 o, glm::vec3 n) {
glm::vec3 e1, e2, pvec, qvec, tvec;
e1 = tri.v2 - tri.v1;
e2 = tri.v3 - tri.v1;
pvec = glm::cross(n, e2);
n = glm::normalize(n);
//NORMALIZE(pvec);
float det = glm::dot(pvec, e1);
if (det != 0)
{
float invDet = 1.0f / det;
tvec = o - tri.v1;
// NORMALIZE(tvec);
float u = invDet * glm::dot(tvec, pvec);
if (u < 0.0f || u > 1.0f)
{
return false;
}
qvec = glm::cross(tvec, e1);
// NORMALIZE(qvec);
float v = invDet * glm::dot(qvec, n);
if (v < 0.0f || u + v > 1.0f)
{
return false;
}
}
else return false;
return true; // det != 0 and all tests for false intersection fail
}
我正在测试射线是否与三角形相交。目前,我正在使用以下代码来测试三角形与从原点到三角形中点的射线之间是否存在交点:
Ray<float> *ray = new Ray<float>(Vec3<float>(0), chosenTriangle->GetTriangleMidpoint());
旁边是我用来存储矢量运算的 Vec3
对象:
template<typename T>
class Vec3
{
public:
T x, y, z;
Vec3() : x(T(0)), y(T(0)), z(T(0)) { }
Vec3(T xx) : x(xx), y(xx), z(xx) { }
Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
Vec3& normalize()
{
T nor2 = length2();
if (nor2 > 0) {
T invNor = 1 / sqrt(nor2);
x *= invNor, y *= invNor, z *= invNor;
}
return *this;
}
Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
bool operator == (const Vec3<T> &v) { return x == v.x && y == v.y && z == v.z; }
Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
T length2() const { return x * x + y * y + z * z; }
T length() const { return sqrt(length2()); }
Vec3<T> CrossProduct(Vec3<T> other)
{
return Vec3<T>(y*other.z - other.y*z, x*other.z - z*other.x, x*other.y - y*other.x);
}
friend std::ostream & operator << (std::ostream &os, const Vec3<T> &v)
{
os << "[" << v.x << " " << v.y << " " << v.z << "]";
return os;
}
选择的三角形和射线具有以下值,其中vertA
、vertB
和vertC
是三角形的顶点,在代表三角形的对象中找到.
计算指定射线与交点之间是否存在交点的代码如下。此代码位于三角形对象方法中,其中 vertA
、vertB
和 vertC
是全局变量。
bool CheckRayIntersection(Vec3<T> &o, Vec3<T> &d)
{
Vec3<T> e1 = vertB - vertA;
Vec3<T> e2 = vertC - vertA;
Vec3<T> p = d.CrossProduct(e2);
T a = e1.dot(p);
if(a == 0)
return false;
float f = 1.0f/a;
Vec3<T> s = o - vertA;
T u = f * s.dot(p);
if(u < 0.0f || u > 1.0f)
return false;
Vec3<T> q = s.CrossProduct(e1);
T v = f * d.dot(q);
if(v < 0.0f || u+v > 1.0f)
return false;
T t = f * e2.dot(q);
return (t >= 0);
}
我仍然从函数中得到一个错误的 returned,但我假设它应该 return 为真,因为通过三角形中点的矢量应该与三角形相交于中点。谁能告诉我我的代码有什么问题?或者 returned false 实际上是正确的吗?
根据您的数据,我通过对光线方向进行归一化(这是代码中唯一明显的变化)设法获得了一致的结果。
下面是代码实现(参考了论文,优化的不是很好):
struct quickVect
{
float x,y,z;
float l;
};
#define DOT(v1,v2) (v1.x*v2.x + v1.y*v2.y+v1.z*v2.z)
#define CROSS(rez,v1,v2) \
rez.x = v1.y*v2.z - v1.z*v2.y; \
rez.y = v1.z*v2.x - v1.x*v2.z; \
rez.z = v1.x*v2.y - v1.y*v2.x;
#define SUB(rez,v1,v2) \
rez.x = v1.x-v2.x; \
rez.y = v1.y-v2.y; \
rez.z = v1.z-v2.z;
#define LENGTH(v) (sqrtf(v.x* v.x + v.y*v.y + v.z*v.z))
#define NORMALIZE(v) \
v.l = LENGTH(v); \
v.x = v.x / v.l; \
v.y = v.y / v.l; \
v.z = v.z / v.l;
#define EPSILON 0.000001f
//#define TEST_CULL
bool testIntersection(quickVect& v1, quickVect& v2, quickVect& v3, quickVect& orig,quickVect& dir)
{
quickVect e1,e2,pvec,qvec,tvec;
SUB(e1,v2,v1);
SUB(e2,v3,v1);
CROSS(pvec,dir,e2);
NORMALIZE(dir);
//NORMALIZE(pvec);
float det = DOT(pvec,e1);
#ifdef TEST_CULL
if (det <EPSILON)
{
return false;
}
SUB(tvec,orig,v1);
float u = DOT(tvec,pvec);
if (u < 0.0 || u > det)
{
return false;
}
CROSS(qvec,tvec,e1);
float v = DOT(dir,qvec);
if (v < 0.0f || v + u > det)
{
return false;
}
#else
if (det < EPSILON && det > -EPSILON )
{
return false;
}
float invDet = 1.0f / det;
SUB(tvec,orig,v1);
// NORMALIZE(tvec);
float u = invDet * DOT(tvec,pvec);
if (u <0.0f || u > 1.0f)
{
return false;
}
CROSS(qvec,tvec,e1);
// NORMALIZE(qvec);
float v = invDet* DOT(qvec,dir);
if (v < 0.0f || u+v > 1.0f)
{
return false;
}
#endif
return true;
}
直接翻译 MichaelCMS 的答案以与 glm 一起使用。
// must normalize direction of ray
bool intersectRayTri(Tri& tri, glm::vec3 o, glm::vec3 n) {
glm::vec3 e1, e2, pvec, qvec, tvec;
e1 = tri.v2 - tri.v1;
e2 = tri.v3 - tri.v1;
pvec = glm::cross(n, e2);
n = glm::normalize(n);
//NORMALIZE(pvec);
float det = glm::dot(pvec, e1);
if (det != 0)
{
float invDet = 1.0f / det;
tvec = o - tri.v1;
// NORMALIZE(tvec);
float u = invDet * glm::dot(tvec, pvec);
if (u < 0.0f || u > 1.0f)
{
return false;
}
qvec = glm::cross(tvec, e1);
// NORMALIZE(qvec);
float v = invDet * glm::dot(qvec, n);
if (v < 0.0f || u + v > 1.0f)
{
return false;
}
}
else return false;
return true; // det != 0 and all tests for false intersection fail
}