如何加速 numpy 数组上的函数

How to speed up functions on numpy arrays

我正在编写代码以在 (5, 5) 形 numpy 数组中拟合二维函数。拟合是通过 scipy.optimize.minimize 最大化来完成的,因此在迭代过程中会调用大量函数。

这些是第一个 cProfile 结果:

Ordered by: internal time

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
1392579   60.849    0.000   60.849    0.000 maxima.py:288(derfs)
1392578   34.243    0.000   34.243    0.000 maxima.py:279(dexp)
696289   31.186    0.000  152.278    0.000 maxima.py:322(ll_jac)
1392578   26.670    0.000   26.670    0.000 maxima.py:283(derf)
3639673   23.772    0.000   23.772    0.000 {method 'reduce' of 'numpy.ufunc' objects}
696290   10.440    0.000   53.965    0.000 maxima.py:308(logll)
1392579    8.882    0.000   69.731    0.000 maxima.py:295(lambda_g)
13202    5.216    0.000  215.145    0.016 lbfgsb.py:198(_minimize_lbfgsb)
3494647    4.468    0.000   32.576    0.000 fromnumeric.py:1621(sum)

这些是函数

import numpy as np
from scipy.special import erf

def dexp(x0, sigma, x=np.arange(5)):
    xx1 = (x + 1 - x0)/sigma
    xx = (x - x0)/sigma
    return np.exp(-xx1*xx1) - np.exp(-xx*xx)

def derf(x0, sigma, x=np.arange(5)):
    return erf((x + 1 - x0) / sigma) - erf((x - x0) / sigma)

def derfs(x0, y0, sigma, xy=np.arange(5)):
    i = erf((xy + 1 - x0) / sigma) - erf((xy - x0) / sigma)
    j = erf((xy + 1 - y0) / sigma) - erf((xy - y0) / sigma)
    return i[:, np.newaxis] * j

def lambda_g(x0, y0, fwhm, factor=0.09*np.pi, f2=0.6):
    return factor * fwhm**2 * derfs(x0, y0, fwhm * f2)

Objective 函数及其梯度,也需要一些优化:

def logll(parameters, *args):
    """ Log-likelihood function
    """
    A, x0, y0, bkg = parameters
    fwhm, area = args

    lambda_p = A * lambda_g(x0, y0, fwhm) + bkg
    return -np.sum(area * np.log(lambda_p) - lambda_p)

def ll_jac(parameters, *args):
    """ This is the Jacobian of the log-likelihood function
    """
    A, x0, y0, bkg = parameters
    fwhm, area = args

    derfx = derf(x0, fwhm*0.6)
    derfy = derf(y0, fwhm*0.6)
    lambda1 = lambda_g(x0, y0, fwhm)
    factor = 1 - area/(A * lambda1 + bkg)

    jac = np.zeros(4)
    # dL/d(A)
    # The derivative of lambda_g is lambda_g(A=1)
    jac[0] = np.sum(factor*lambda1)
    # dL/d(x0) and dL/d(y0)
    jac12 = -0.3*A*fwhm*np.sqrt(np.pi)
    jac[1] = jac12*np.sum(dexp(x0, fwhm * 0.6)[:, np.newaxis] * derfy*factor)
    jac[2] = jac12*np.sum(dexp(y0, fwhm * 0.6)[:, np.newaxis] * derfx*factor)
    # dL/d(bkg)
    jac[3] = np.sum(factor)

    return jac

在我的电脑上,

%timeit dexp(2.3, 2.)
10000 loops, best of 3: 16 µs per loop

%timeit derf(2.3, 2.)
100000 loops, best of 3: 14 µs per loop

%timeit derfs(2.3, 2.2, 2.)
10000 loops, best of 3: 32.2 µs per loop

是否可以加快这些速度?你建议我做什么? cython?numba?在深入研究这些模块之前,我还有什么可以尝试的吗?

您可以尝试少做一些操作。例如,您可以执行以下操作:

def dexp2(x0, sigma, x=np.arange(5)):
    a = (x - x0) / sigma
    return np.exp(-(a + 1/sigma)**2) - np.exp(-(a*a))

~35%-40% 更好。

def derf2(x0, sigma, x=np.arange(5)):
    a = (x - x0) / sigma
    return erf(a + 1 / sigma) - erf(a)

~50% 更好。

def derfs2(x0, y0, sigma, xy=np.arange(5)):
    a = (xy - x0) / sigma
    b = (xy - y0) / sigma
    i = erf(a + 1 / sigma) - erf(a)
    j = erf(b + 1 / sigma) - erf(b)
    return i[:, np.newaxis] * j

~50% 更好。

这些只是微优化。一般来说,如果你的输入有这个大小,我认为 numba and/or cython 帮不上什么忙。也许最好检查可用的 optimization method 中哪个更适合您的特殊情况,并尝试以巧妙的方式对其进行初始化。