pandas 中的逐元素 XOR

Element-wise XOR in pandas

我知道逻辑与是&,逻辑或是|在 Pandas 系列中,但我一直在寻找按元素逻辑异或。我想我可以用 AND 和 OR 来表达它,但如果可以的话,我更愿意使用 XOR。

谢谢!

Python异或:a ^ b

Numpy logical XOR: np.logical_xor(a,b)

测试性能 - 结果相等:

1.大小为 10000

的随机布尔序列
In [7]: a = np.random.choice([True, False], size=10000)
In [8]: b = np.random.choice([True, False], size=10000)

In [9]: %timeit a ^ b
The slowest run took 7.61 times longer than the fastest. This could mean that an intermediate result is being cached
100000 loops, best of 3: 11 us per loop

In [10]: %timeit np.logical_xor(a,b)
The slowest run took 6.25 times longer than the fastest. This could mean that an intermediate result is being cached
100000 loops, best of 3: 11 us per loop

2。大小为 1000

的随机布尔序列
In [11]: a = np.random.choice([True, False], size=1000)
In [12]: b = np.random.choice([True, False], size=1000)

In [13]: %timeit a ^ b
The slowest run took 21.52 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 1.58 us per loop

In [14]: %timeit np.logical_xor(a,b)
The slowest run took 19.45 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 1.58 us per loop

3。大小为 100

的随机布尔序列
In [15]: a = np.random.choice([True, False], size=100)
In [16]: b = np.random.choice([True, False], size=100)

In [17]: %timeit a ^ b
The slowest run took 33.43 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 614 ns per loop

In [18]: %timeit np.logical_xor(a,b)
The slowest run took 45.49 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 616 ns per loop

4.大小为 10

的随机布尔序列
In [19]: a = np.random.choice([True, False], size=10)
In [20]: b = np.random.choice([True, False], size=10)

In [21]: %timeit a ^ b
The slowest run took 86.10 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 509 ns per loop

In [22]: %timeit np.logical_xor(a,b)
The slowest run took 40.94 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 511 ns per loop