在 PySpark ML 中创建自定义转换器
Create a custom Transformer in PySpark ML
我是 Spark SQL DataFrames 和 ML (PySpark) 的新手。
如何创建自定义分词器,例如删除停用词并使用 nltk 中的一些库?我可以延长默认的吗?
Can I extend the default one?
不是真的。默认 Tokenizer
是 pyspark.ml.wrapper.JavaTransformer
的子类,与 pyspark.ml.feature
中的其他转换器和估计器一样,将实际处理委托给它的 Scala 对应项。既然你想使用 Python,你应该直接扩展 pyspark.ml.pipeline.Transformer
。
import nltk
from pyspark import keyword_only ## < 2.0 -> pyspark.ml.util.keyword_only
from pyspark.ml import Transformer
from pyspark.ml.param.shared import HasInputCol, HasOutputCol, Param, Params, TypeConverters
# Available in PySpark >= 2.3.0
from pyspark.ml.util import DefaultParamsReadable, DefaultParamsWritable
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, StringType
class NLTKWordPunctTokenizer(
Transformer, HasInputCol, HasOutputCol,
# Credits
# by https://whosebug.com/users/234944/benjamin-manns
DefaultParamsReadable, DefaultParamsWritable):
stopwords = Param(Params._dummy(), "stopwords", "stopwords",
typeConverter=TypeConverters.toListString)
@keyword_only
def __init__(self, inputCol=None, outputCol=None, stopwords=None):
super(NLTKWordPunctTokenizer, self).__init__()
self.stopwords = Param(self, "stopwords", "")
self._setDefault(stopwords=[])
kwargs = self._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, inputCol=None, outputCol=None, stopwords=None):
kwargs = self._input_kwargs
return self._set(**kwargs)
def setStopwords(self, value):
return self._set(stopwords=list(value))
def getStopwords(self):
return self.getOrDefault(self.stopwords)
# Required in Spark >= 3.0
def setInputCol(self, value):
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
# Required in Spark >= 3.0
def setOutputCol(self, value):
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
def _transform(self, dataset):
stopwords = set(self.getStopwords())
def f(s):
tokens = nltk.tokenize.wordpunct_tokenize(s)
return [t for t in tokens if t.lower() not in stopwords]
t = ArrayType(StringType())
out_col = self.getOutputCol()
in_col = dataset[self.getInputCol()]
return dataset.withColumn(out_col, udf(f, t)(in_col))
用法示例(来自ML - Features的数据):
sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = NLTKWordPunctTokenizer(
inputCol="sentence", outputCol="words",
stopwords=nltk.corpus.stopwords.words('english'))
tokenizer.transform(sentenceDataFrame).show()
对于自定义 Python Estimator
请参阅 How to Roll a Custom Estimator in PySpark mllib
⚠ 此答案取决于内部 API 并且与 Spark 2.0.3、2.1.1、2.2.0 或更高版本兼容(SPARK-19348). For code compatible with previous Spark versions please see revision 8.
我是 Spark SQL DataFrames 和 ML (PySpark) 的新手。 如何创建自定义分词器,例如删除停用词并使用 nltk 中的一些库?我可以延长默认的吗?
Can I extend the default one?
不是真的。默认 Tokenizer
是 pyspark.ml.wrapper.JavaTransformer
的子类,与 pyspark.ml.feature
中的其他转换器和估计器一样,将实际处理委托给它的 Scala 对应项。既然你想使用 Python,你应该直接扩展 pyspark.ml.pipeline.Transformer
。
import nltk
from pyspark import keyword_only ## < 2.0 -> pyspark.ml.util.keyword_only
from pyspark.ml import Transformer
from pyspark.ml.param.shared import HasInputCol, HasOutputCol, Param, Params, TypeConverters
# Available in PySpark >= 2.3.0
from pyspark.ml.util import DefaultParamsReadable, DefaultParamsWritable
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, StringType
class NLTKWordPunctTokenizer(
Transformer, HasInputCol, HasOutputCol,
# Credits
# by https://whosebug.com/users/234944/benjamin-manns
DefaultParamsReadable, DefaultParamsWritable):
stopwords = Param(Params._dummy(), "stopwords", "stopwords",
typeConverter=TypeConverters.toListString)
@keyword_only
def __init__(self, inputCol=None, outputCol=None, stopwords=None):
super(NLTKWordPunctTokenizer, self).__init__()
self.stopwords = Param(self, "stopwords", "")
self._setDefault(stopwords=[])
kwargs = self._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, inputCol=None, outputCol=None, stopwords=None):
kwargs = self._input_kwargs
return self._set(**kwargs)
def setStopwords(self, value):
return self._set(stopwords=list(value))
def getStopwords(self):
return self.getOrDefault(self.stopwords)
# Required in Spark >= 3.0
def setInputCol(self, value):
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
# Required in Spark >= 3.0
def setOutputCol(self, value):
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
def _transform(self, dataset):
stopwords = set(self.getStopwords())
def f(s):
tokens = nltk.tokenize.wordpunct_tokenize(s)
return [t for t in tokens if t.lower() not in stopwords]
t = ArrayType(StringType())
out_col = self.getOutputCol()
in_col = dataset[self.getInputCol()]
return dataset.withColumn(out_col, udf(f, t)(in_col))
用法示例(来自ML - Features的数据):
sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = NLTKWordPunctTokenizer(
inputCol="sentence", outputCol="words",
stopwords=nltk.corpus.stopwords.words('english'))
tokenizer.transform(sentenceDataFrame).show()
对于自定义 Python Estimator
请参阅 How to Roll a Custom Estimator in PySpark mllib
⚠ 此答案取决于内部 API 并且与 Spark 2.0.3、2.1.1、2.2.0 或更高版本兼容(SPARK-19348). For code compatible with previous Spark versions please see revision 8.