字典中短语的 R 情感分析
R sentiment analysis with phrases in dictionaries
我正在对我拥有的一组推文进行情绪分析,现在我想知道如何将短语添加到正面和负面词典中。
我已经阅读了我想要测试的短语的文件,但是当 运行进行情绪分析时,它没有给我结果。
阅读情感算法时,我可以看到它正在将单词与词典匹配,但是有没有一种方法可以同时扫描单词和短语?
代码如下:
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
require(plyr)
require(stringr)
# we got a vector of sentences. plyr will handle a list
# or a vector as an "l" for us
# we want a simple array ("a") of scores back, so we use
# "l" + "a" + "ply" = "laply":
scores = laply(sentences, function(sentence, pos.words, neg.words) {
# clean up sentences with R's regex-driven global substitute, gsub():
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\d+', '', sentence)
# and convert to lower case:
sentence = tolower(sentence)
# split into words. str_split is in the stringr package
word.list = str_split(sentence, '\s+')
# sometimes a list() is one level of hierarchy too much
words = unlist(word.list)
# compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos)
neg.matches = match(words, neg)
# match() returns the position of the matched term or NA
# we just want a TRUE/FALSE:
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
# and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)
return(score)
}, pos.words, neg.words, .progress=.progress )
scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}
analysis=score.sentiment(Tweets, pos, neg)
table(analysis$score)
这是我得到的结果:
0
20
而我追求的是此函数提供的标准 table
例如
-2 -1 0 1 2
1 2 3 4 5
例如。
有人知道如何在短语上 运行 吗?
注意:TWEETS文件是一个句子文件。
函数score.sentiment
似乎有效。如果我尝试一个非常简单的设置,
Tweets = c("this is good", "how bad it is")
neg = c("bad")
pos = c("good")
analysis=score.sentiment(Tweets, pos, neg)
table(analysis$score)
我得到了预期的结果,
> table(analysis$score)
-1 1
1 1
您如何将 20 条推文提供给该方法?根据你 posting 的结果,即 0 20
,我会说你的问题是你的 20 条推文没有任何正面或负面的词,尽管你当然会这样已经注意到了。也许如果您 post 在您的推文列表中提供更多详细信息,您的正面和负面词语会更容易帮助您。
总之,您的功能似乎运行良好。
希望对您有所帮助。
通过评论澄清后编辑:
实际上,要解决您的问题,您需要将句子标记为 n-grams
,其中 n
对应于您用于正面和负面列表的最大单词数 n-grams
。你可以看到如何做到这一点,例如在 this SO question。为了完整起见,并且因为我自己测试过,这里有一个你可以做什么的例子。我将其简化为 bigrams
(n=2) 并使用以下输入:
Tweets = c("rewarding hard work with raising taxes and VAT. #LabourManifesto",
"Ed Miliband is offering 'wrong choice' of 'more cuts' in #LabourManifesto")
pos = c("rewarding hard work")
neg = c("wrong choice")
您可以像这样创建一个二元词分词器,
library(tm)
library(RWeka)
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min=2,max=2))
并进行测试,
> BigramTokenizer("rewarding hard work with raising taxes and VAT. #LabourManifesto")
[1] "rewarding hard" "hard work" "work with"
[4] "with raising" "raising taxes" "taxes and"
[7] "and VAT" "VAT #LabourManifesto"
然后在您的方法中,您只需替换这一行,
word.list = str_split(sentence, '\s+')
由此
word.list = BigramTokenizer(sentence)
当然,如果您将 word.list
更改为 ngram.list
或类似的东西会更好。
结果如预期,
> table(analysis$score)
-1 0
1 1
只需确定您的 n-gram
尺码并将其添加到 Weka_control
就可以了。
希望对您有所帮助。
我正在对我拥有的一组推文进行情绪分析,现在我想知道如何将短语添加到正面和负面词典中。
我已经阅读了我想要测试的短语的文件,但是当 运行进行情绪分析时,它没有给我结果。
阅读情感算法时,我可以看到它正在将单词与词典匹配,但是有没有一种方法可以同时扫描单词和短语?
代码如下:
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
require(plyr)
require(stringr)
# we got a vector of sentences. plyr will handle a list
# or a vector as an "l" for us
# we want a simple array ("a") of scores back, so we use
# "l" + "a" + "ply" = "laply":
scores = laply(sentences, function(sentence, pos.words, neg.words) {
# clean up sentences with R's regex-driven global substitute, gsub():
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\d+', '', sentence)
# and convert to lower case:
sentence = tolower(sentence)
# split into words. str_split is in the stringr package
word.list = str_split(sentence, '\s+')
# sometimes a list() is one level of hierarchy too much
words = unlist(word.list)
# compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos)
neg.matches = match(words, neg)
# match() returns the position of the matched term or NA
# we just want a TRUE/FALSE:
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
# and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)
return(score)
}, pos.words, neg.words, .progress=.progress )
scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}
analysis=score.sentiment(Tweets, pos, neg)
table(analysis$score)
这是我得到的结果:
0
20
而我追求的是此函数提供的标准 table 例如
-2 -1 0 1 2
1 2 3 4 5
例如。
有人知道如何在短语上 运行 吗? 注意:TWEETS文件是一个句子文件。
函数score.sentiment
似乎有效。如果我尝试一个非常简单的设置,
Tweets = c("this is good", "how bad it is")
neg = c("bad")
pos = c("good")
analysis=score.sentiment(Tweets, pos, neg)
table(analysis$score)
我得到了预期的结果,
> table(analysis$score)
-1 1
1 1
您如何将 20 条推文提供给该方法?根据你 posting 的结果,即 0 20
,我会说你的问题是你的 20 条推文没有任何正面或负面的词,尽管你当然会这样已经注意到了。也许如果您 post 在您的推文列表中提供更多详细信息,您的正面和负面词语会更容易帮助您。
总之,您的功能似乎运行良好。
希望对您有所帮助。
通过评论澄清后编辑:
实际上,要解决您的问题,您需要将句子标记为 n-grams
,其中 n
对应于您用于正面和负面列表的最大单词数 n-grams
。你可以看到如何做到这一点,例如在 this SO question。为了完整起见,并且因为我自己测试过,这里有一个你可以做什么的例子。我将其简化为 bigrams
(n=2) 并使用以下输入:
Tweets = c("rewarding hard work with raising taxes and VAT. #LabourManifesto",
"Ed Miliband is offering 'wrong choice' of 'more cuts' in #LabourManifesto")
pos = c("rewarding hard work")
neg = c("wrong choice")
您可以像这样创建一个二元词分词器,
library(tm)
library(RWeka)
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min=2,max=2))
并进行测试,
> BigramTokenizer("rewarding hard work with raising taxes and VAT. #LabourManifesto")
[1] "rewarding hard" "hard work" "work with"
[4] "with raising" "raising taxes" "taxes and"
[7] "and VAT" "VAT #LabourManifesto"
然后在您的方法中,您只需替换这一行,
word.list = str_split(sentence, '\s+')
由此
word.list = BigramTokenizer(sentence)
当然,如果您将 word.list
更改为 ngram.list
或类似的东西会更好。
结果如预期,
> table(analysis$score)
-1 0
1 1
只需确定您的 n-gram
尺码并将其添加到 Weka_control
就可以了。
希望对您有所帮助。