Cythonize 偏微分方程积分器
Cythonize a partial differential equation integrator
我正在尝试使用 Cython 加速偏微分方程的有限差分积分器。我不确定我需要做什么才能让 Cython 正确处理 numpy 数组。
我用的扩散项函数是
def laplacian(var, dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
lap = numpy.zeros_like(var)
lap[1:] = (4.0/3.0)*var[:-1]
lap[0] = (4.0/3.0)*var[1]
lap[:-1] += (4.0/3.0)*var[1:]
lap[-1] += (4.0/3.0)*var[0]
lap += (-5.0/2.0)*var
lap[2:] += (-1.0/12.0)*var[:-2]
lap[:2] += (-1.0/12.0)*var[-2:]
lap[:-2] += (-1.0/12.0)*var[2:]
lap[-2:] += (-1.0/12.0)*var[:2]
return lap / dh2
模型方程的右轴为
from derivatives import laplacian
def dbdt(b,w,p,m,d,dx2):
""" db/dt of Modified Klausmeier """
return w*b**2 - m*b + laplacian(b,dx2)
def dwdt(b,w,p,m,d,dx2):
""" dw/dt of Modified Klausmeier """
return p - w - w*b**2 + d*laplacian(b,dx2)
如何使用 Cython 优化这些函数?
我在 Github 上有一个用于我的工作代码的存储库,它集成了 Gray-Scott 模型 - Gray-Scott model integrator。
所以我想我已经弄明白了,尽管我不确定这是最优化的方法:
import numpy as np
cimport numpy as np
cdef laplacian(np.ndarray[np.float64_t, ndim=1] var,np.float64_t dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
lap = np.zeros_like(var)
lap[1:] = (4.0/3.0)*var[:-1]
lap[0] = (4.0/3.0)*var[1]
lap[:-1] += (4.0/3.0)*var[1:]
lap[-1] += (4.0/3.0)*var[0]
lap += (-5.0/2.0)*var
lap[2:] += (-1.0/12.0)*var[:-2]
lap[:2] += (-1.0/12.0)*var[-2:]
lap[:-2] += (-1.0/12.0)*var[2:]
lap[-2:] += (-1.0/12.0)*var[:2]
return lap / dh2
以下我用过setup.py
from distutils.core import setup
from Cython.Build import cythonize
setup(
ext_modules = cythonize("derivatives_c.pyx")
)
欢迎提出任何改进建议..
要有效地使用 Cython,您应该明确所有循环并确保 cython -a
显示尽可能少的 Python 调用。第一次尝试是:
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def laplacian(double [::1] var, double dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
cdef int n = var.shape[0]
cdef double[::1] lap = np.zeros(n)
cdef int i
for i in range(0, n-1):
lap[1+i] = (4.0/3.0)*var[i]
lap[0] = (4.0/3.0)*var[1]
for i in range(0, n-1):
lap[i] += (4.0/3.0)*var[1+i]
lap[n-1] += (4.0/3.0)*var[0]
for i in range(0, n):
lap[i] += (-5.0/2.0)*var[i]
for i in range(0, n-2):
lap[2+i] += (-1.0/12.0)*var[i]
for i in range(0, 2):
lap[i] += (-1.0/12.0)*var[n - 2 + i]
for i in range(0, n-2):
lap[i] += (-1.0/12.0)*var[i+2]
for i in range(0, 2):
lap[n-2+i] += (-1.0/12.0)*var[i]
for i in range(0, n):
lap[i] /= dh2
return lap
现在这给你:
$ python -m timeit -s 'import numpy as np; from lap import laplacian; var = np.random.rand(1000000); dh2 = .01' 'laplacian(var, dh2)'
100 loops, best of 3: 11.5 msec per loop
而 NumPy 代码给出:
100 loops, best of 3: 18.5 msec per loop
请注意,可以通过合并循环等进一步优化 Cython。
我还尝试了 Pythran 的自定义(即未在 master 中提交)版本,并且在不更改原始 Python 代码的情况下,我获得了与 Cython 版本相同的加速,没有麻烦转换代码:
#pythran export laplacian(float [], float)
import numpy
def laplacian(var, dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
lap = numpy.zeros_like(var)
lap[1:] = (4.0/3.0)*var[:-1]
lap[0] = (4.0/3.0)*var[1]
lap[:-1] += (4.0/3.0)*var[1:]
lap[-1] += (4.0/3.0)*var[0]
lap += (-5.0/2.0)*var
lap[2:] += (-1.0/12.0)*var[:-2]
lap[:2] += (-1.0/12.0)*var[-2:]
lap[:-2] += (-1.0/12.0)*var[2:]
lap[-2:] += (-1.0/12.0)*var[:2]
return lap / dh2
转换为:
$ pythran lap.py -O3
我得到:
100 loops, best of 3: 11.6 msec per loop
我正在尝试使用 Cython 加速偏微分方程的有限差分积分器。我不确定我需要做什么才能让 Cython 正确处理 numpy 数组。
我用的扩散项函数是
def laplacian(var, dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
lap = numpy.zeros_like(var)
lap[1:] = (4.0/3.0)*var[:-1]
lap[0] = (4.0/3.0)*var[1]
lap[:-1] += (4.0/3.0)*var[1:]
lap[-1] += (4.0/3.0)*var[0]
lap += (-5.0/2.0)*var
lap[2:] += (-1.0/12.0)*var[:-2]
lap[:2] += (-1.0/12.0)*var[-2:]
lap[:-2] += (-1.0/12.0)*var[2:]
lap[-2:] += (-1.0/12.0)*var[:2]
return lap / dh2
模型方程的右轴为
from derivatives import laplacian
def dbdt(b,w,p,m,d,dx2):
""" db/dt of Modified Klausmeier """
return w*b**2 - m*b + laplacian(b,dx2)
def dwdt(b,w,p,m,d,dx2):
""" dw/dt of Modified Klausmeier """
return p - w - w*b**2 + d*laplacian(b,dx2)
如何使用 Cython 优化这些函数?
我在 Github 上有一个用于我的工作代码的存储库,它集成了 Gray-Scott 模型 - Gray-Scott model integrator。
所以我想我已经弄明白了,尽管我不确定这是最优化的方法:
import numpy as np
cimport numpy as np
cdef laplacian(np.ndarray[np.float64_t, ndim=1] var,np.float64_t dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
lap = np.zeros_like(var)
lap[1:] = (4.0/3.0)*var[:-1]
lap[0] = (4.0/3.0)*var[1]
lap[:-1] += (4.0/3.0)*var[1:]
lap[-1] += (4.0/3.0)*var[0]
lap += (-5.0/2.0)*var
lap[2:] += (-1.0/12.0)*var[:-2]
lap[:2] += (-1.0/12.0)*var[-2:]
lap[:-2] += (-1.0/12.0)*var[2:]
lap[-2:] += (-1.0/12.0)*var[:2]
return lap / dh2
以下我用过setup.py
from distutils.core import setup
from Cython.Build import cythonize
setup(
ext_modules = cythonize("derivatives_c.pyx")
)
欢迎提出任何改进建议..
要有效地使用 Cython,您应该明确所有循环并确保 cython -a
显示尽可能少的 Python 调用。第一次尝试是:
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def laplacian(double [::1] var, double dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
cdef int n = var.shape[0]
cdef double[::1] lap = np.zeros(n)
cdef int i
for i in range(0, n-1):
lap[1+i] = (4.0/3.0)*var[i]
lap[0] = (4.0/3.0)*var[1]
for i in range(0, n-1):
lap[i] += (4.0/3.0)*var[1+i]
lap[n-1] += (4.0/3.0)*var[0]
for i in range(0, n):
lap[i] += (-5.0/2.0)*var[i]
for i in range(0, n-2):
lap[2+i] += (-1.0/12.0)*var[i]
for i in range(0, 2):
lap[i] += (-1.0/12.0)*var[n - 2 + i]
for i in range(0, n-2):
lap[i] += (-1.0/12.0)*var[i+2]
for i in range(0, 2):
lap[n-2+i] += (-1.0/12.0)*var[i]
for i in range(0, n):
lap[i] /= dh2
return lap
现在这给你:
$ python -m timeit -s 'import numpy as np; from lap import laplacian; var = np.random.rand(1000000); dh2 = .01' 'laplacian(var, dh2)'
100 loops, best of 3: 11.5 msec per loop
而 NumPy 代码给出:
100 loops, best of 3: 18.5 msec per loop
请注意,可以通过合并循环等进一步优化 Cython。
我还尝试了 Pythran 的自定义(即未在 master 中提交)版本,并且在不更改原始 Python 代码的情况下,我获得了与 Cython 版本相同的加速,没有麻烦转换代码:
#pythran export laplacian(float [], float)
import numpy
def laplacian(var, dh2):
""" (1D array, dx^2) -> laplacian(1D array)
periodic_laplacian_1D_4th_order
Implementing the 4th order 1D laplacian with periodic condition
"""
lap = numpy.zeros_like(var)
lap[1:] = (4.0/3.0)*var[:-1]
lap[0] = (4.0/3.0)*var[1]
lap[:-1] += (4.0/3.0)*var[1:]
lap[-1] += (4.0/3.0)*var[0]
lap += (-5.0/2.0)*var
lap[2:] += (-1.0/12.0)*var[:-2]
lap[:2] += (-1.0/12.0)*var[-2:]
lap[:-2] += (-1.0/12.0)*var[2:]
lap[-2:] += (-1.0/12.0)*var[:2]
return lap / dh2
转换为:
$ pythran lap.py -O3
我得到:
100 loops, best of 3: 11.6 msec per loop