Prolog - 广度优先搜索水壶
Prolog - breadth first search for water jug
我正在研究 Prolog 中 space 状态下的搜索策略,我正在看下面的程序,是著名的水罐问题,为简单起见,您有 2 个水罐(4 和 3升),您可以将水注满、倒空并将水转移到另一个水壶中,直到第一个水壶倒空或第二个水壶满为止。目标是有 2 升(水壶没有任何尺寸)。
这个实现应该是广度优先。
go:-solution(S).
solution(ActionList):-init(I),nl,write(init),tab(4),write(I),
nl,solution(I,[],ActionList),!.
solution(State,VisitedStates,[]) :- final(State).
solution(State,VisitedStates, [Action|Rest]) :- applicable(Action,State) ,
apply(Action,State,NewState),
\+visited(NewState,VisitedStates), write(Action), tab(4) , write(NewState), nl,
solution(NewState,[State|VisitedStates],Rest).
visited(State,[VisitedState|OtherVisitedStates]) :- sameState(State,VisitedState).
visited(State,[VisitedState|OtherVisitedStates]) :- visited(State,OtherVisitedStates).
sameState(S,S).
init(state(0,0)).
final(state(2,X)).
applicable(emptyA,state(Qa,Qb)) :- Qa > 0.
applicable(emptyB,state(Qa,Qb)) :- Qb > 0.
applicable(fillA,state(Qa,Qb)) :- Qa < 4.
applicable(fillB,state(Qa,Qb)) :- Qb < 3.
applicable(emptyAinB,state(Qa,Qb)) :- Qa > 0 , Qtot is Qa + Qb , Qtot =< 3.
applicable(emptyBinA,state(Qa,Qb)) :- Qb > 0, Qtot is Qa + Qb , Qtot =< 4.
applicable(fillAwithB,state(Qa,Qb)) :- Qa < 4, Qtrasf is 4 - Qa , Qtrasf =< Qb.
applicable(fillBwithA,state(Qa,Qb)) :- Qb < 3, Qtrasf is 3 - Qb , Qtrasf=<Qa.
apply(emptyA,state(Qa,Qb),state(0,Qb)).
apply(emptyB,state(Qa,Qb),state(Qa,0)).
apply(fillA,state(Qa,Qb),state(4,Qb)).
apply(fillB,state(Qa,Qb),state(Qa,3)).
apply(emptyAinB,state(Qa,Qb),state(0,Qtot)) :- Qtot is Qa+Qb.
apply(emptyBinA,state(Qa,Qb),state(Qtot,0)) :- Qtot is Qa+Qb.
apply(fillAwithB,state(Qa,Qb),state(4,NewQb)) :- NewQb is Qb-(4-Qa).
apply(fillAwithB,state(Qa,Qb),state(NewQa,3)) :- NewQa is Qa-(3-Qb).
我不清楚的是如何理解是深度优先而不是深度优先,例如,查看代码。我正在看书 "Prolog programming for Artificial Intelligence" (I.Bratko) 中 BF 的实现,这对我来说似乎有所不同,因为它保留了所有备选候选者(在我的例子中是节点或状态)及其路径(如理论上应该是)。另一个问题:BF应该首先找到最短路径,但这是我程序的响应:
init state(0,0)
fillA state(4,0)
fillB state(4,3)
emptyA state(0,3)
emptyBinA state(3,0)
fillB state(3,3)
fillAwithB state(4,2)
emptyA state(0,2)
emptyBinA state(2,0)
显然这不是最短路径,操作2和4是不必要的。
其他细节:我尝试使用 trace 执行,但似乎不是最终的 BF,因为从 "state(0,0)" 开始,唯一可直接到达的状态是 "state(4,0)" 和 "state(0,3)",然后在 BFS 中要访问这 3 个节点,但查看跟踪,它们不是,在状态 (4,0) 之后它访问状态 (4,3)。现在你能确认我走的路是正确的,这不是 BFS 吗?但是尝试遵循 Bratko 实现我遇到了一个问题:我应该枚举每个节点及其后继节点,我认为这对于水壶问题是不可行的。有什么提示吗?
找到了一个解决方案,基于 BFS 的 Bratko 实现和 logtalk 提供的状态表示。这是我的最终代码,我验证了这是一个带跟踪的 BFS。
go:-start(Start),solve(Start,Solution),reverse(Solution,L),print(L).
solve( Start, Solution) :-
breadthfirst( [ [Start] ], Solution).
% breadthfirst( [ Path1, Path2, ...], Solution):
% Solution is an extension to a goal of one of paths
breadthfirst( [ [Node | Path] | _], [Node | Path]) :-
goal( Node).
breadthfirst( [Path | Paths], Solution) :-
extend( Path, NewPaths),
append( Paths, NewPaths, Paths1),
breadthfirst( Paths1, Solution).
extend( [Node | Path], NewPaths) :-
bagof( [NewNode, Node | Path],
( next_state( Node, NewNode), \+member( NewNode, [Node | Path] ) ),
NewPaths),
!.
extend( Path, [] ). % bagof failed: Node has no successor
% states are represented by the compound term (4-gallon jug, 3-gallon jug);
% in the initial state both jugs are empty:
start((0, 0)).
% the goal state is to measure 2 gallons of water:
goal((2, _)).
goal((_, 2)).
% fill up the 4-gallon jug if it is not already filled:
next_state((X, Y), (4, Y)) :- X < 4.
% fill up the 3-gallon jug if it is not already filled:
next_state((X, Y), (X, 3)) :- Y < 3.
% if there is water in the 3-gallon jug Y > 0) and there is room in the 4-gallon jug (X < 4) THEN use it to fill up
% the 4-gallon jug until it is full (4-gallon jug = 4 in the new state) and leave the rest in the 3-gallon jug:
next_state((X, Y), (4, Z)) :- Y > 0, X < 4,
Aux is X + Y, Aux >= 4,
Z is Y - (4 - X).
% if there is water in the 4-gallon jug (X > 0) and there is room in the 3-gallon jug (Y < 3) THEN use it to fill up
% the 3-gallon jug until it is full (3-gallon jug = 3 in the new state) and leave the rest in the 4-gallon jug:
next_state((X, Y), (Z, 3)) :- X > 0, Y < 3,
Aux is X + Y, Aux >= 3,
Z is X - (3 - Y).
% there is something in the 3-gallon jug (Y > 0) and together with the amount in the 4-gallon jug it fits in the
% 4-gallon jug (Aux is X + Y, Aux =< 4) THEN fill it all (Y is 0 in the new state) into the 4-gallon jug (Z is Y + X):
next_state((X, Y),(Z, 0)) :- Y > 0,
Aux is X + Y, Aux =< 4,
Z is Y + X.
% there is something in the 4-gallon jug (X > 0) and together with the amount in the 3-gallon jug it fits in the
% 3-gallon jug (Aux is X + Y, Aux =< 3) THEN fill it all (X is 0 in the new state) into the 3-gallon jug (Z is Y + X):
next_state((X, Y),(0, Z)) :- X > 0,
Aux is X + Y, Aux =< 3,
Z is Y + X.
% empty the 4-gallon jug IF it is not already empty (X > 0):
next_state((X, Y), (0, Y)) :- X > 0.
% empty the 3-gallon jug IF it is not already empty (Y > 0):
next_state((X, Y), (X, 0)) :- Y > 0.
print([]).
print([H|T]):-write(H),nl,print(T).
只有最后一个小问题,我想存储达到每个状态所执行的动作,但我不知道该怎么做。例如,如果状态是 (0,0),下一个状态可能是 (0,3),动作 "fillB",我如何存储这个动作?我不想修改 BFS 实现,只是将其放入状态表示中,例如 (0,3,fillB)
不应该工作,因为不止一个状态对应于一个动作,所以路径中新状态的成员资格检查将失败。
编辑
可以从解决方案的两个相邻状态中检索执行的操作,因此我将这几行添加到代码中:
action((_,Y),(4,Y),fill1).
action((X,_),(X,3),fill2).
action((_,Y),(4,Z),put(2,1)):-Y\=Z.
action((X,_),(Z,3),put(1,2)):-X\=Z.
action((X,_),(Z,0),put(2,1)):-X\=Z.
action((_,Y),(0,Z),put(2,1)):-Y\=Z.
action((_,Y),(0,Y),empty1).
action((X,_),(X,0),empty2).
并重新定义打印谓词:
print([],_).
print([H|T],0):-write(start),tab(4),write(H),nl,print(T,H).
print([H|T],Prev):-action(Prev,H,X),write(X),tab(4),write(H),nl,print(T,H).
我正在研究 Prolog 中 space 状态下的搜索策略,我正在看下面的程序,是著名的水罐问题,为简单起见,您有 2 个水罐(4 和 3升),您可以将水注满、倒空并将水转移到另一个水壶中,直到第一个水壶倒空或第二个水壶满为止。目标是有 2 升(水壶没有任何尺寸)。 这个实现应该是广度优先。
go:-solution(S).
solution(ActionList):-init(I),nl,write(init),tab(4),write(I),
nl,solution(I,[],ActionList),!.
solution(State,VisitedStates,[]) :- final(State).
solution(State,VisitedStates, [Action|Rest]) :- applicable(Action,State) ,
apply(Action,State,NewState),
\+visited(NewState,VisitedStates), write(Action), tab(4) , write(NewState), nl,
solution(NewState,[State|VisitedStates],Rest).
visited(State,[VisitedState|OtherVisitedStates]) :- sameState(State,VisitedState).
visited(State,[VisitedState|OtherVisitedStates]) :- visited(State,OtherVisitedStates).
sameState(S,S).
init(state(0,0)).
final(state(2,X)).
applicable(emptyA,state(Qa,Qb)) :- Qa > 0.
applicable(emptyB,state(Qa,Qb)) :- Qb > 0.
applicable(fillA,state(Qa,Qb)) :- Qa < 4.
applicable(fillB,state(Qa,Qb)) :- Qb < 3.
applicable(emptyAinB,state(Qa,Qb)) :- Qa > 0 , Qtot is Qa + Qb , Qtot =< 3.
applicable(emptyBinA,state(Qa,Qb)) :- Qb > 0, Qtot is Qa + Qb , Qtot =< 4.
applicable(fillAwithB,state(Qa,Qb)) :- Qa < 4, Qtrasf is 4 - Qa , Qtrasf =< Qb.
applicable(fillBwithA,state(Qa,Qb)) :- Qb < 3, Qtrasf is 3 - Qb , Qtrasf=<Qa.
apply(emptyA,state(Qa,Qb),state(0,Qb)).
apply(emptyB,state(Qa,Qb),state(Qa,0)).
apply(fillA,state(Qa,Qb),state(4,Qb)).
apply(fillB,state(Qa,Qb),state(Qa,3)).
apply(emptyAinB,state(Qa,Qb),state(0,Qtot)) :- Qtot is Qa+Qb.
apply(emptyBinA,state(Qa,Qb),state(Qtot,0)) :- Qtot is Qa+Qb.
apply(fillAwithB,state(Qa,Qb),state(4,NewQb)) :- NewQb is Qb-(4-Qa).
apply(fillAwithB,state(Qa,Qb),state(NewQa,3)) :- NewQa is Qa-(3-Qb).
我不清楚的是如何理解是深度优先而不是深度优先,例如,查看代码。我正在看书 "Prolog programming for Artificial Intelligence" (I.Bratko) 中 BF 的实现,这对我来说似乎有所不同,因为它保留了所有备选候选者(在我的例子中是节点或状态)及其路径(如理论上应该是)。另一个问题:BF应该首先找到最短路径,但这是我程序的响应:
init state(0,0)
fillA state(4,0)
fillB state(4,3)
emptyA state(0,3)
emptyBinA state(3,0)
fillB state(3,3)
fillAwithB state(4,2)
emptyA state(0,2)
emptyBinA state(2,0)
显然这不是最短路径,操作2和4是不必要的。
其他细节:我尝试使用 trace 执行,但似乎不是最终的 BF,因为从 "state(0,0)" 开始,唯一可直接到达的状态是 "state(4,0)" 和 "state(0,3)",然后在 BFS 中要访问这 3 个节点,但查看跟踪,它们不是,在状态 (4,0) 之后它访问状态 (4,3)。现在你能确认我走的路是正确的,这不是 BFS 吗?但是尝试遵循 Bratko 实现我遇到了一个问题:我应该枚举每个节点及其后继节点,我认为这对于水壶问题是不可行的。有什么提示吗?
找到了一个解决方案,基于 BFS 的 Bratko 实现和 logtalk 提供的状态表示。这是我的最终代码,我验证了这是一个带跟踪的 BFS。
go:-start(Start),solve(Start,Solution),reverse(Solution,L),print(L).
solve( Start, Solution) :-
breadthfirst( [ [Start] ], Solution).
% breadthfirst( [ Path1, Path2, ...], Solution):
% Solution is an extension to a goal of one of paths
breadthfirst( [ [Node | Path] | _], [Node | Path]) :-
goal( Node).
breadthfirst( [Path | Paths], Solution) :-
extend( Path, NewPaths),
append( Paths, NewPaths, Paths1),
breadthfirst( Paths1, Solution).
extend( [Node | Path], NewPaths) :-
bagof( [NewNode, Node | Path],
( next_state( Node, NewNode), \+member( NewNode, [Node | Path] ) ),
NewPaths),
!.
extend( Path, [] ). % bagof failed: Node has no successor
% states are represented by the compound term (4-gallon jug, 3-gallon jug);
% in the initial state both jugs are empty:
start((0, 0)).
% the goal state is to measure 2 gallons of water:
goal((2, _)).
goal((_, 2)).
% fill up the 4-gallon jug if it is not already filled:
next_state((X, Y), (4, Y)) :- X < 4.
% fill up the 3-gallon jug if it is not already filled:
next_state((X, Y), (X, 3)) :- Y < 3.
% if there is water in the 3-gallon jug Y > 0) and there is room in the 4-gallon jug (X < 4) THEN use it to fill up
% the 4-gallon jug until it is full (4-gallon jug = 4 in the new state) and leave the rest in the 3-gallon jug:
next_state((X, Y), (4, Z)) :- Y > 0, X < 4,
Aux is X + Y, Aux >= 4,
Z is Y - (4 - X).
% if there is water in the 4-gallon jug (X > 0) and there is room in the 3-gallon jug (Y < 3) THEN use it to fill up
% the 3-gallon jug until it is full (3-gallon jug = 3 in the new state) and leave the rest in the 4-gallon jug:
next_state((X, Y), (Z, 3)) :- X > 0, Y < 3,
Aux is X + Y, Aux >= 3,
Z is X - (3 - Y).
% there is something in the 3-gallon jug (Y > 0) and together with the amount in the 4-gallon jug it fits in the
% 4-gallon jug (Aux is X + Y, Aux =< 4) THEN fill it all (Y is 0 in the new state) into the 4-gallon jug (Z is Y + X):
next_state((X, Y),(Z, 0)) :- Y > 0,
Aux is X + Y, Aux =< 4,
Z is Y + X.
% there is something in the 4-gallon jug (X > 0) and together with the amount in the 3-gallon jug it fits in the
% 3-gallon jug (Aux is X + Y, Aux =< 3) THEN fill it all (X is 0 in the new state) into the 3-gallon jug (Z is Y + X):
next_state((X, Y),(0, Z)) :- X > 0,
Aux is X + Y, Aux =< 3,
Z is Y + X.
% empty the 4-gallon jug IF it is not already empty (X > 0):
next_state((X, Y), (0, Y)) :- X > 0.
% empty the 3-gallon jug IF it is not already empty (Y > 0):
next_state((X, Y), (X, 0)) :- Y > 0.
print([]).
print([H|T]):-write(H),nl,print(T).
只有最后一个小问题,我想存储达到每个状态所执行的动作,但我不知道该怎么做。例如,如果状态是 (0,0),下一个状态可能是 (0,3),动作 "fillB",我如何存储这个动作?我不想修改 BFS 实现,只是将其放入状态表示中,例如 (0,3,fillB) 不应该工作,因为不止一个状态对应于一个动作,所以路径中新状态的成员资格检查将失败。
编辑
可以从解决方案的两个相邻状态中检索执行的操作,因此我将这几行添加到代码中:
action((_,Y),(4,Y),fill1).
action((X,_),(X,3),fill2).
action((_,Y),(4,Z),put(2,1)):-Y\=Z.
action((X,_),(Z,3),put(1,2)):-X\=Z.
action((X,_),(Z,0),put(2,1)):-X\=Z.
action((_,Y),(0,Z),put(2,1)):-Y\=Z.
action((_,Y),(0,Y),empty1).
action((X,_),(X,0),empty2).
并重新定义打印谓词:
print([],_).
print([H|T],0):-write(start),tab(4),write(H),nl,print(T,H).
print([H|T],Prev):-action(Prev,H,X),write(X),tab(4),write(H),nl,print(T,H).