无法从 kernel.s 打印,即使它已加载到内存中

Can't print from kernel.s even though its loaded onto Memory

我正在尝试通过编写自己的引导加载程序将内核加载到内存中。我已经能够成功地将内核加载到内存中——我知道因为我使用了 bochs 调试器将断点设置为 0x7c00 并单步执行,系统确实跳入了内核。问题是跳入内核后 none 的打印语句(在 kernel.s 中)起作用。这在终端上表明内核已加载到内存中。

这是 bootblock.s 文件(大部分相关代码位于标签 booter:

# bootblock.s
# Empty boot block file

# .equ symbol, expression
# These directive set the value of the symbol to the expression
    .equ    BOOT_SEGMENT,0x07c0
    .equ    DISPLAY_SEGMENT,0xb800
    .equ    KERNEL_LOCATION, 0x1000
    .equ    STACK_SP, 0xffff
    .equ    STACK_SS, 0x0

.text               # Code segment
.globl    _start    # The entry point must be global
.code16             # Real mode


_start:
    ###MAKE BOOTABLE###
    #. = _start + 510
    #.byte = 0x55
    #.byte = 0xaa
    jmp booter

os_size:
    #Place where createimage writes the OS size
    .word 0
    .word 0

print:
  movw  $BOOT_SEGMENT,%ax
  movw  %ax,%ds

print_loop:
  lodsb
  cmpb  [=11=],%al
  je  print_done
  movb  ,%ah
  movl  [=11=]x0002,%ebx
  int  [=11=]x10
  jmp  print_loop
print_done:
  retw


booter:

    ###SET UP STACK###
    #Allocating the stack
    movw $STACK_SS, %ax
    movw %ax, %ss
    movw $STACK_SP, %sp

    movl $allocating, %esi
    call print

    movl $done, %esi
    call print

    #Resetting the disk drive, setting %dl and calling int 0x13
    #movb [=11=]x0, %ah
    #movb [=11=]x0, %dl
    #int [=11=]x13

    movl $bootblock_test, %esi
    call print
    movl $hellostring, %esi
    call print

    ###LOAD KERNEL###
    movl $loadingkernel, %esi
    call print

    #Number of sectors to read
    #movb [=11=]x24, %al
    #movb [=11=]x80, %al
    movb [=11=]x08, %al


    movb [=11=]x02, %ah
    #track number
    #movb [=11=]x00, %ch

    #which sector to read from (sector 2 where kernel should be)
    movb [=11=]x02, %cl

    #set up head number
    movb [=11=]x0, %dh

    #Set the drive number to 0x0 (floppy)
    movb [=11=]x0, %dl

    #Time to set es:bx to read from the correct place (0:1000)
    movw [=11=]x0100, %bx
    movw %bx, %es
    movw [=11=]x0, %bx
    #movw [=11=]x0, %ax

    #Setting %ah = 2 and calling int 0x13 (read sector)

    int [=11=]x13

    movl $done, %esi
    call print

    #Booting up at 0x07c0
    #movw $BOOT_SEGMENT, %ax
    #movw %ax, %ds
    #movl $bootmessage, %esi
    #call print


    #%dh/%ch control head numbers, setting them to 0
    #movb [=11=]x0, %dh
    #movb [=11=]x0, %ch

    #movw %ds, 

    ###INVOKE KERNEL###

    #Kernel jump
    movl $readymessage, %esi
    call print

    #Setting %ds = 0x7c0
    movw [=11=]x0100, %ax
    movw %ax, %ds

    #Time to set es:bx to read from the correct place (0:1000)
    movw [=11=]x0100, %bx
    movw %bx, %es
    movw [=11=]x0, %bx


    movl [=11=]x1000, %ax
    jmp %ax
    mov [=11=]x0, %ax

    #If any errors, message will be displayed here
    movl $errormessage, %esi
    call print


forever:
    jmp forever


#Error handling
error:
    movl $errormessage, %esi
    call print

# messages
mystring:  
  .asciz  "test.\n\r"
bootblock_test:
  .asciz "\nBootblock Test\n\r"
hellostring:  
  .asciz  "How are you today?\n\r"
myname:
.asciz "Welcome\n\r"
loadingkernel:
.asciz "Loading Kernel...\n\r"
done:
.asciz "Done!\n\r"
bootmessage:
    .asciz "Booting up...\n\r"
readymessage:
    .asciz "Sliding into yo Kernel like... \n\r"
errormessage:
    .asciz "Something went terribly wrong...\n\r"
rebootmessage:
    .asciz "Press any key to reboot the OS!\n\r"
allocating:
.asciz "Allocating Stack...\n\r"

这是 kernel.s 文件:

.data                               # Data segment

# Some strings 
kernel:
    .asciz  "[Kernel]-> "
testing:
    .asciz  "Running a trivial test... "
works:
    .asciz  "Seems Ok. Now go get some sleep :)."
not:
    .asciz  "*Failed*"

# 'Newline' string ('carriage return', 'linefeed', '[=12=]')
newline:
    .byte 10
    .byte 13
    .byte 0

# An integer
result:
    .word 1000



.text                               # Code segment
.code16                             # Real mode
.globl _start                       # The entry point must be global

#
# The first instruction to execute in a program is called the entry
# point. The linker expects to find the entry point in the "symbol" _start
# (with underscore).
#
_start:
    pushw   %bp     # Setup stack frame
    movw    %sp,%bp

    pushw   $newline
    call    displayString   # Print messages
    pushw   $kernel
    call    displayString
    pushw   $testing
    call    displayString
    pushw   00
    call    trivialTest # trivialTest(1000)
    addw    ,%sp      # Pop newline, kernel, testing, and '1000'
    cmpw    %ax,result      
    jne .L6     # If (trivialTest(1000) != 1000) goto L6
    pushw   $works          
    jmp .L12            
.L6:                # Test failed
    pushw   $not            
.L12:
    call    displayString   # Print ok/failed message
    addw    ,%sp
    pushw   $newline
    call    displayString
    addw    ,%sp
.L8:                # Loop forever
    jmp .L8

#
# int trivialTest(n)
# {
#     if (n > 0) {
#         trivialTest(n-1);
#     }
#     return n; 
# }

trivialTest:    
    pushw   %bp     # Setup stack frame
    movw    %sp,%bp
    movw    4(%bp),%ax  # Move argument to ax
    testw   %ax,%ax     # Logical compare (sets SF, ZF and PF)
    jg  .L2     # if (argument > 0) goto L2
    xorw    %ax,%ax     # else return 0
    popw    %bp         
    retw                
.L2:
    decw    %ax
    pushw   %ax
    call    trivialTest # trivialTest(argument - 1)
                # (Recursive calls until argument == 0)
    addw    ,%sp      # Pop argument
    incw    %ax
    popw    %bp
    retw            # Return (argument in ax)

displayString:
    pushw   %bp     # Setup stack frame
    movw    %sp,%bp
    pushw   %ax     # Save ax, bx, cx, si, es
    pushw   %bx
    pushw   %cx
    pushw   %si
    pushw   %es
    movw    %ds, %ax    # Make sure ES points to the right
    movw    %ax, %es    #  segment
    movw    4(%bp),%cx  # Move string adr to cx
    movw    %cx, %si
loop:       
    lodsb           # Load character to write (c) into al,
                #  and increment si
    cmpb    [=12=], %al     
    jz  done        # if (c == '[=12=]') exit loop
    movb    ,%ah     # else print c
    movw    [=12=]x0002,%bx
    # int 0x10 sends a character to the display
    # ah = 0xe (14)
    # al = character to write
    # bh = active page number (we use 0x00)
    # bl = foreground color (we use 0x02)
    int [=12=]x10           
    jmp loop
done:
    popw    %es     # Restore saved registers
    popw    %si
    popw    %cx
    popw    %bx
    popw    %ax
    popw    %bp
    retw            # Return to caller

再一次,我在调试器中检查到内核正在加载到内存 (0x1000) 中。我认为问题出在 setting/using bootblock.s 中的某些寄存器(主要是:ds,ax),但我不确定它是什么。

这些观察结果可能对您有所帮助:

  • 尝试加载内核时,您应该取消注释设置轨道号的行。

  • displayString例程中不需要设置ES寄存器。只需一个正确的 DS。

  • 您正试图通过近距离跳转到内核! (jmp %ax) 那是行不通的。你需要一个段间跳跃。使用 jmp [=11=]x0000:[=11=]x0100

  • 你应该避免使用像 %esi 这样的 32 位寄存器来传递地址,因为这是 16 位代码。

代码有很多问题。大多数似乎适用于大多数 16 位 OS 引导加载程序的基本问题都可以在我最近的 (类似类型的问题)中找到。它涵盖了使用 SS/SP/ES/DS/CS 寄存器需要注意的事项,8086/8088 上的堆栈性能问题,以及一些需要注意的旧 buggy 8086/8088 问题。

你的代码有一个具体问题 - 如果你将 运行 你的代码在 8086/8088 系统或模拟器(不是 286、386 等)上,那么你应该坚持使用 16 位寄存器,因为32 位寄存器不可用。您的代码使用 ESIEBX 寄存器(32 位)。你应该使用 SIBX.

此代码中的主要问题是,在大多数情况下,内核是从磁盘读取的,但碰巧读取的扇区少于内核映像实际占用的扇区。这恰好导致本应由内核打印的变量未被加载。

我原本假设内核看起来很小,从磁盘读取 8 个扇区对于提供的示例代码来说绰绰有余:

#Number of sectors to read
movb [=10=]x08, %al

我发现楼主在做作业,有人发布了一些解决问题的关键信息。我已经分叉了 git project 以供参考。一些关键信息是正在使用的 Makefile 类型(略有不同)和为作业提供的名为 createimage 的程序。

Makefile 足够接近 类似于:

# Makefile for the OS projects.
# Best viewed with tabs set to 4 spaces.

CC = gcc -Wall -Wextra -std=c99 -g
LD = ld

# Where to locate the kernel in memory
KERNEL_ADDR = 0x1000

# Compiler flags
#-fno-builtin:          Don't recognize builtin functions that do not begin with
#                       '__builtin_' as prefix.
#
#-fomit-frame-pointer:  Don't keep the frame pointer in a register for 
#                       functions that don't need one.
#
#-make-program-do-what-i-want-it-to-do:
#                       Turn on all friendly compiler flags.
#
#-O2:                   Turn on all optional optimizations except for loop unrolling
#                       and function inlining.
#
#-c:                    Compile or assemble the source files, but do not link.
#
#-Wall:                 All of the `-W' options combined (all warnings on)

CCOPTS = -c -fomit-frame-pointer -O2 -fno-builtin

# Linker flags
#-nostartfiles:         Do not use the standard system startup files when linking.
#
#-nostdlib:             Don't use the standard system libraries and startup files when
#                       linking. Only the files you specify will be passed to the linker.
#          
#-Ttext X:              Use X as the starting address for the text segment of the output 
#                       file.

LDOPTS = -nostartfiles -nostdlib -Ttext

# Makefile targets
all: bootblock createimage kernel image boch_image

kernel: kernel.o
    $(LD) $(LDOPTS) $(KERNEL_ADDR) -o kernel $<

bootblock: bootblock.o
    $(LD) $(LDOPTS) 0x0 -o bootblock $<

createimage: createimage.o
    $(CC) -o createimage $<

# Create an image to put on the floppy
image: bootblock createimage kernel
    ./createimage ./bootblock ./kernel

# Put the image on the floppy (these two stages are independent, as both
# vmware and bochs can run using only the image file stored on the harddisk)
#boot: image
#   cat ./image > /dev/sda

#write image to boch disk image
boch_image: image
    dd if=image of=bochs.img conv=notrunc

# Clean up!
clean:
    rm -f *.o
    rm -f createimage image bootblock kernel 

# No, really, clean up!
distclean: clean
    rm -f *~
    rm -f \#*
    rm -f *.bak
    rm -f bochsout.txt

# How to compile a C file
%.o:%.c
    $(CC) $(CCOPTS) $<

# How to assemble
%.o:%.s
    $(CC) $(CCOPTS) $<

# How to produce assembler input from a C file
%.s:%.c
    $(CC) $(CCOPTS) -S $<

根据原始发布者的后续评论,他们正在构建 elf_i386 二进制文件(Linux ELF 格式用于 32 位)。上面的 Makefile 表明内核被构建为 ELF 映像,然后放置在磁盘上。 ELF 格式为每个部分添加了相当数量的填充,因此假设从磁盘读取 8 个扇区 可能还不够。 Makefile 中没有引用 objcopy 或转换为平面二进制格式。我发现给定的 createimage 程序从 32 位 ELF 格式中提取内核映像,并生成输出,说明引导加载程序需要读取多少扇区才能获得整个内核。 createimage代码是:

/* createimage.c -- create a bootable image in 16 real mode from several elf file
 */
#include <stdio.h>
#include <stdlib.h>
#include "createimage.h"

int file_process(FILE *elf_file, FILE *image, char *elf_filename);
long byte_get (unsigned char *field, int size);

int main (int argc, char ** argv)
{
    //here hasn't check the magic numbers of elf
    if (argc != 3) {
        printf("USAGE:%s bootblock kernel\n", argv[0]);
        return -1;
    } 
    FILE *bootblock, *kernel, *image;
    if ((bootblock = fopen (argv[1], "rb")) == NULL) {
        printf("can't open %s\n", argv[1]);
        return -1;
    }
    if ((image = fopen ("image", "wb")) == NULL) {
        printf("can't open image!\n");
        return -1;
    }
    if (file_process(bootblock, image, argv[1])) {
        printf("process bootblock failed\n");
        return -1;
    }

    if ((kernel = fopen (argv[2], "rb")) == NULL) {
        printf("can't open %s\n", argv[2]);
        return -1;
    }
    if (file_process(kernel, image, argv[2])) {
        printf("process kernel failed\n");
        return -1;
    }

    fclose(bootblock);
    fclose(kernel);
    fclose(image);

    return 0;
}

long byte_get (unsigned char *field, int size)
{
    switch (size)
    {
        case 1:
            return *field;

        case 2:
            return  ((unsigned int) (field[0])) | (((unsigned int) (field[1])) << 8);
        case 4:
            return  ((unsigned long) (field[0]))
                |    (((unsigned long) (field[1])) << 8)
                |    (((unsigned long) (field[2])) << 16)
                |    (((unsigned long) (field[3])) << 24);
        default:
            printf("byte_get error\n");
            return -1;
    }
}


/* read information from elf file, and write LOAD segment to image file 
 *
 * note: the structure in file is not aligned, we just read it from file byte
 * by byte
 */
int file_process(FILE *elf_file, FILE *image, char *elf_filename)
{
    unsigned int header_sz, pheader_sz;
    unsigned long phoff;
    unsigned int p_offset;
    unsigned int p_filesz;
    unsigned int p_memsz;
    elf_header header;
    elf_program_header pheader;

    header_sz = sizeof (elf_header);
    pheader_sz = sizeof(elf_program_header);

    printf("processing %s:\n", elf_filename);
    printf("header size is: %d\n", header_sz);
    printf("program header size is: %d\n", pheader_sz);

    if (header_sz != fread(&header, 1, header_sz, elf_file)) {
        printf("read error!\n");
        return -1;
    }

    //get program header's offset
    phoff = byte_get(header.e_phoff, sizeof(header.e_phoff));

    printf("Program header table offset in file is :\t %u\n", phoff);

    if (fseek(elf_file, phoff, SEEK_SET)) {
        printf("fseek %s failed! at line %d\n", elf_filename, __LINE__);
        return -1;
    }
    //printf("the current position: %d\n", ftell(elf_file));

    if (pheader_sz != fread(&pheader, 1, pheader_sz, elf_file)) {
        printf("read error at line %d!\n", __LINE__);
        return -1;
    }
    //get the LOAD segment's offset, filesz, mensz
    p_offset = byte_get(pheader.p_offset, sizeof(pheader.p_offset));
    p_filesz = byte_get(pheader.p_filesz, sizeof(pheader.p_filesz));
    p_memsz = byte_get(pheader.p_memsz, sizeof(pheader.p_memsz));
    printf("p_offset: 0x%x\tp_filesz: 0x%x\tp_memsz: 0x%x\t\n", p_offset, p_filesz, p_memsz);
    //write elf's LOAD segment to image, and pad to 512 bytes(1 sector)
    char *buffer;
    const unsigned int sector_sz = 512;
    const char MBR_signature[] = {0x55, 0xaa};
    unsigned int n_sector;
    unsigned int n_byte;

    if (p_memsz % sector_sz != 0)
        n_sector = p_memsz / sector_sz + 1;
    else
        n_sector = p_memsz / sector_sz;

    n_byte = n_sector * sector_sz;

    if (!(buffer = (char *)calloc(n_byte, sizeof(char)))) {
        printf("malloc buffer failed! at line %d\n", __LINE__);
        return -1;
    }
    if (fseek(elf_file, p_offset, SEEK_SET)) {
        printf("fseek %s failed! at line %d\n", elf_filename, __LINE__);
        return -1;
    }
    if (p_filesz != fread(buffer, 1, p_filesz, elf_file)) {
        printf("read error at line %d!\n", __LINE__);
        return -1;
    }
    if (n_byte != fwrite(buffer, 1, n_byte, image)) {
        printf("write error at line %d!\n", __LINE__);
        return -1;
    }
    //write MBR signature to image, which is 2 bytes
    if (fseek(image, 510, SEEK_SET)) {
        printf("fseek %s failed! at line %d\n", elf_filename, __LINE__);
        return -1;
    }
    if (2 != fwrite(MBR_signature, 1, 2, image)) {
        printf("write error at line %d!\n", __LINE__);
        return -1;
    }

    printf("write image:\n%d sectors,\t%d bytes\n", n_sector, n_byte);

    return 0;
}

重要的是,在提取代码和数据部分后(将与 dd 放在磁盘映像中),它在底部提供类似于以下的输出:

processing ./kernel:
header size is: 52
program header size is: 32
Program header table offset in file is :         52
p_offset: 0x54  p_filesz: 0x10db        p_memsz: 0x10db
write image:
9 sectors,      4608 bytes
dd if=image of=bochs.img conv=notrunc

这里有重要信息 9 sectors, 4608 bytes。这表示内核在扇区中有多大。原始海报的代码必须确保他们在加载内核时读取了那么多扇区。所以简单的解决方法是将代码更改为:

#Number of sectors to read should match output from createimage
movb [=14=]x09, %al