Python 相关矩阵 3d 数据帧
Python correlation matrix 3d dataframe
我在 SQL 服务器中有一个历史 return table 按日期和资产 ID 是这样的:
[Date] [Asset] [1DRet]
jan asset1 0.52
jan asset2 0.12
jan asset3 0.07
feb asset1 0.41
feb asset2 0.33
feb asset3 0.21
...
所以我需要计算给定日期范围内所有资产组合的相关矩阵:A1,A2; A1,A3 ; A2,A3
我正在使用 pandas 并在我的 SQL Select 中过滤日期范围并按日期排序。
我正在尝试使用 pandas df.corr()、numpy.corrcoef 和 Scipy 来做到这一点,但无法为我的 n 变量数据帧做到这一点
我看到了一些示例,但它始终适用于数据框,在该数据框中,您每天每列和一行都有一个资产。
这是我正在执行的代码块:
qryRet = "Select * from IndexesValue where Date > '20100901' and Date < '20150901' order by Date"
result = conn.execute(qryRet)
df = pd.DataFrame(data=list(result),columns=result.keys())
df1d = df[['Date','Id_RiskFactor','1DReturn']]
corr = df1d.set_index(['Date','Id_RiskFactor']).unstack().corr()
corr.columns = corr.columns.droplevel()
corr.index = corr.columns.tolist()
corr.index.name = 'symbol_1'
corr.columns.name = 'symbol_2'
print(corr)
conn.close()
为此,我收到了这条消息:
corr.columns = corr.columns.droplevel()
AttributeError: 'Index' object has no attribute 'droplevel'
**Print(df1d.head())**
Date Id_RiskFactor 1DReturn
0 2010-09-02 149 0E-12
1 2010-09-02 150 -0.004242875148
2 2010-09-02 33 0.000590000011
3 2010-09-02 28 0.000099999997
4 2010-09-02 34 -0.000010000000
**print(df.head())**
Date Id_RiskFactor Value 1DReturn 5DReturn
0 2010-09-02 149 0.040096000000 0E-12 0E-12
1 2010-09-02 150 1.736700000000 -0.004242875148 -0.013014321215
2 2010-09-02 33 2.283000000000 0.000590000011 0.001260000048
3 2010-09-02 28 2.113000000000 0.000099999997 0.000469999999
4 2010-09-02 34 0.615000000000 -0.000010000000 0.000079999998
**print(corr.columns)**
Index([], dtype='object')
创建示例 DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'daily_return': np.random.random(15),
'symbol': ['A'] * 5 + ['B'] * 5 + ['C'] * 5,
'date': np.tile(pd.date_range('1-1-2015', periods=5), 3)})
>>> df
daily_return date symbol
0 0.011467 2015-01-01 A
1 0.613518 2015-01-02 A
2 0.334343 2015-01-03 A
3 0.371809 2015-01-04 A
4 0.169016 2015-01-05 A
5 0.431729 2015-01-01 B
6 0.474905 2015-01-02 B
7 0.372366 2015-01-03 B
8 0.801619 2015-01-04 B
9 0.505487 2015-01-05 B
10 0.946504 2015-01-01 C
11 0.337204 2015-01-02 C
12 0.798704 2015-01-03 C
13 0.311597 2015-01-04 C
14 0.545215 2015-01-05 C
我假设您已经针对相关日期过滤了 DataFrame。然后,您需要一个数据透视表 table,其中您将唯一日期作为索引,将符号作为单独的列,每天 returns 作为值。最后,您对结果调用 corr()
。
corr = df.set_index(['date','symbol']).unstack().corr()
corr.columns = corr.columns.droplevel()
corr.index = corr.columns.tolist()
corr.index.name = 'symbol_1'
corr.columns.name = 'symbol_2'
>>> corr
symbol_2 A B C
symbol_1
A 1.000000 0.188065 -0.745115
B 0.188065 1.000000 -0.688808
C -0.745115 -0.688808 1.000000
您可以 select 基于日期的 DataFrame 子集,如下所示:
start_date = pd.Timestamp('2015-1-4')
end_date = pd.Timestamp('2015-1-5')
>>> df.loc[df.date.between(start_date, end_date), :]
daily_return date symbol
3 0.371809 2015-01-04 A
4 0.169016 2015-01-05 A
8 0.801619 2015-01-04 B
9 0.505487 2015-01-05 B
13 0.311597 2015-01-04 C
14 0.545215 2015-01-05 C
如果您想展平相关矩阵:
corr.stack().reset_index()
symbol_1 symbol_2 0
0 A A 1.000000
1 A B 0.188065
2 A C -0.745115
3 B A 0.188065
4 B B 1.000000
5 B C -0.688808
6 C A -0.745115
7 C B -0.688808
8 C C 1.000000
我在 SQL 服务器中有一个历史 return table 按日期和资产 ID 是这样的:
[Date] [Asset] [1DRet]
jan asset1 0.52
jan asset2 0.12
jan asset3 0.07
feb asset1 0.41
feb asset2 0.33
feb asset3 0.21
...
所以我需要计算给定日期范围内所有资产组合的相关矩阵:A1,A2; A1,A3 ; A2,A3
我正在使用 pandas 并在我的 SQL Select 中过滤日期范围并按日期排序。
我正在尝试使用 pandas df.corr()、numpy.corrcoef 和 Scipy 来做到这一点,但无法为我的 n 变量数据帧做到这一点
我看到了一些示例,但它始终适用于数据框,在该数据框中,您每天每列和一行都有一个资产。
这是我正在执行的代码块:
qryRet = "Select * from IndexesValue where Date > '20100901' and Date < '20150901' order by Date"
result = conn.execute(qryRet)
df = pd.DataFrame(data=list(result),columns=result.keys())
df1d = df[['Date','Id_RiskFactor','1DReturn']]
corr = df1d.set_index(['Date','Id_RiskFactor']).unstack().corr()
corr.columns = corr.columns.droplevel()
corr.index = corr.columns.tolist()
corr.index.name = 'symbol_1'
corr.columns.name = 'symbol_2'
print(corr)
conn.close()
为此,我收到了这条消息:
corr.columns = corr.columns.droplevel()
AttributeError: 'Index' object has no attribute 'droplevel'
**Print(df1d.head())**
Date Id_RiskFactor 1DReturn
0 2010-09-02 149 0E-12
1 2010-09-02 150 -0.004242875148
2 2010-09-02 33 0.000590000011
3 2010-09-02 28 0.000099999997
4 2010-09-02 34 -0.000010000000
**print(df.head())**
Date Id_RiskFactor Value 1DReturn 5DReturn
0 2010-09-02 149 0.040096000000 0E-12 0E-12
1 2010-09-02 150 1.736700000000 -0.004242875148 -0.013014321215
2 2010-09-02 33 2.283000000000 0.000590000011 0.001260000048
3 2010-09-02 28 2.113000000000 0.000099999997 0.000469999999
4 2010-09-02 34 0.615000000000 -0.000010000000 0.000079999998
**print(corr.columns)**
Index([], dtype='object')
创建示例 DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'daily_return': np.random.random(15),
'symbol': ['A'] * 5 + ['B'] * 5 + ['C'] * 5,
'date': np.tile(pd.date_range('1-1-2015', periods=5), 3)})
>>> df
daily_return date symbol
0 0.011467 2015-01-01 A
1 0.613518 2015-01-02 A
2 0.334343 2015-01-03 A
3 0.371809 2015-01-04 A
4 0.169016 2015-01-05 A
5 0.431729 2015-01-01 B
6 0.474905 2015-01-02 B
7 0.372366 2015-01-03 B
8 0.801619 2015-01-04 B
9 0.505487 2015-01-05 B
10 0.946504 2015-01-01 C
11 0.337204 2015-01-02 C
12 0.798704 2015-01-03 C
13 0.311597 2015-01-04 C
14 0.545215 2015-01-05 C
我假设您已经针对相关日期过滤了 DataFrame。然后,您需要一个数据透视表 table,其中您将唯一日期作为索引,将符号作为单独的列,每天 returns 作为值。最后,您对结果调用 corr()
。
corr = df.set_index(['date','symbol']).unstack().corr()
corr.columns = corr.columns.droplevel()
corr.index = corr.columns.tolist()
corr.index.name = 'symbol_1'
corr.columns.name = 'symbol_2'
>>> corr
symbol_2 A B C
symbol_1
A 1.000000 0.188065 -0.745115
B 0.188065 1.000000 -0.688808
C -0.745115 -0.688808 1.000000
您可以 select 基于日期的 DataFrame 子集,如下所示:
start_date = pd.Timestamp('2015-1-4')
end_date = pd.Timestamp('2015-1-5')
>>> df.loc[df.date.between(start_date, end_date), :]
daily_return date symbol
3 0.371809 2015-01-04 A
4 0.169016 2015-01-05 A
8 0.801619 2015-01-04 B
9 0.505487 2015-01-05 B
13 0.311597 2015-01-04 C
14 0.545215 2015-01-05 C
如果您想展平相关矩阵:
corr.stack().reset_index()
symbol_1 symbol_2 0
0 A A 1.000000
1 A B 0.188065
2 A C -0.745115
3 B A 0.188065
4 B B 1.000000
5 B C -0.688808
6 C A -0.745115
7 C B -0.688808
8 C C 1.000000