如何重载 `__eq__` 来比较 pandas DataFrames 和 Series?

How do I overload `__eq__` to compare pandas DataFrames and Series?

为清楚起见,我将从我的代码中摘录并使用通用名称。我有一个 class Foo() 将 DataFrame 存储到属性。

import pandas as pd
import pandas.util.testing as pdt

class Foo():

    def __init__(self, bar):
        self.bar = bar                                     # dict of dicts
        self.df = pd.DataFrame(bar)                        # pandas object     

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        return NotImplemented

    def __ne__(self, other):
        result = self.__eq__(other)
        if result is NotImplemented:
            return result
        return not result

但是,当我尝试比较 Foo 的两个实例时,我得到了一个与比较两个 DataFrame 的歧义相关的异常(如果没有 'df' 中的键,比较应该可以正常工作 Foo.__dict__).

d1 = {'A' : pd.Series([1, 2], index=['a', 'b']),
      'B' : pd.Series([1, 2], index=['a', 'b'])}
d2 = d1.copy()

foo1 = Foo(d1)
foo2 = Foo(d2)

foo1.bar                                                   # dict
foo1.df                                                    # pandas DataFrame

foo1 == foo2                                               # ValueError 

[Out] ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

幸运的是,pandas 具有用于断言两个 DataFrame 或 Series 是否为真的实用函数。如果可能的话,我想使用这个函数的比较操作。

pdt.assert_frame_equal(pd.DataFrame(d1), pd.DataFrame(d2)) # no raises

有几个选项可以解决两个 Foo 实例的比较:

  1. 比较 __dict__ 的副本,其中 new_dict 缺少 df 键
  2. __dict__ 中删除 df 键(不理想)
  3. 不比较 __dict__,但只有元组中包含的部分
  4. 重载 __eq__ 以促进 pandas DataFrame 比较

最后一个选项似乎是 long-运行 中最稳健的,但我不确定最佳方法。最后,我想重构 __eq__ 以比较 Foo.__dict__ 中的所有项目,包括 DataFrames(和系列)。 关于如何完成此操作的任何想法?

来自这些线程的解决方案

Comparing two pandas dataframes for differences

Pandas DataFrames with NaNs equality comparison

def df_equal(self):
    try:
        assert_frame_equal(csvdata, csvdata_old)
        return True
    except:
        return False

对于数据框字典:

def df_equal(df1, df2):
    try:
        assert_frame_equal(df1, df2)
        return True
    except:
        return False

def __eq__(self, other):
    if self.df.keys() != other.keys():
        return False
    for k in self.df.keys():
        if not df_equal(self.df[k], other[k]):
            return False
    return True

下面的代码似乎完全满足了我原来的问题。它同时处理 pandas DataFramesSeries。欢迎简化。

这里的诀窍是 __eq__ 已实现以分别比较 __dict__ 和 pandas 对象。最后比较每个的真实性并返回结果。这里有一些有趣和被利用的东西,and returns 第二个值如果第一个值是 True.

使用错误处理和外部比较函数的想法受到@ate50eggs 提交的答案的启发。非常感谢。

import pandas as pd
import pandas.util.testing as pdt

def ndframe_equal(ndf1, ndf2):
    try:
        if isinstance(ndf1, pd.DataFrame) and isinstance(ndf2, pd.DataFrame):
            pdt.assert_frame_equal(ndf1, ndf2)
            #print('DataFrame check:', type(ndf1), type(ndf2))
        elif  isinstance(ndf1, pd.Series) and isinstance(ndf2, pd.Series):
            pdt.assert_series_equal(ndf1, ndf2)
            #print('Series check:', type(ndf1), type(ndf2))
        return True
    except (ValueError, AssertionError, AttributeError):            
        return False


class Foo(object):

    def __init__(self, bar):
        self.bar = bar                                     
        try:
            self.ndf = pd.DataFrame(bar)
        except(ValueError):
            self.ndf = pd.Series(bar)  

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            # Auto check attrs if assigned to DataFrames/Series, then add to list
            blacklisted  = [attr for attr in self.__dict__ if 
                              isinstance(getattr(self, attr), pd.DataFrame)
                              or isinstance(getattr(self, attr), pd.Series)]

            # Check DataFrames and Series
            for attr in blacklisted:
                ndf_eq = ndframe_equal(getattr(self, attr), 
                                          getattr(other, attr))

            # Ignore pandas objects; check rest of __dict__ and build new dicts
            self._dict = {
                key: value 
                for key, value in self.__dict__.items()
                if key not in blacklisted}
            other._dict = {
                key: value 
                for key, value in other.__dict__.items()
                if key not in blacklisted}
            return ndf_eq and self._dict == other._dict    # order is important 
        return NotImplemented             

    def __ne__(self, other):
        result = self.__eq__(other)
        if result is NotImplemented:
            return result
        return not result

正在 DataFrames.

上测试后面的代码
# Data for DataFrames
d1 = {'A' : pd.Series([1, 2], index=['a', 'b']),
      'B' : pd.Series([1, 2], index=['a', 'b'])}
d2 = d1.copy()
d3 = {'A' : pd.Series([1, 2], index=['abc', 'b']),
      'B' : pd.Series([9, 0], index=['abc', 'b'])}

# Test DataFrames
foo1 = Foo(d1)
foo2 = Foo(d2)

foo1.bar                                         # dict of Series
foo1.ndf                                         # pandas DataFrame

foo1 == foo2                                     # triggers _dict 
#foo1.__dict__['_dict']
#foo1._dict

foo1 == foo2                                     # True                
foo1 != foo2                                     # False 
not foo1 == foo2                                 # False               
not foo1 != foo2                                 # True
foo2 = Foo(d3)                                                     

foo1 == foo2                                     # False
foo1 != foo2                                     # True
not foo1 == foo2                                 # True
not foo1 != foo2                                 # False

最后测试另一个常见的 pandas 对象,Series

# Data for Series
s1 = {'a' : 0., 'b' : 1., 'c' : 2.}
s2 = s1.copy()
s3 = {'a' : 0., 'b' : 4, 'c' : 5}

# Test Series
foo3 = Foo(s1)
foo4 = Foo(s2)

foo3.bar                                         # dict 
foo4.ndf                                         # pandas Series

foo3 == foo4                                     # True
foo3 != foo4                                     # False
not foo3 == foo4                                 # False
not foo3 != foo4                                 # True

foo4 = Foo(s3)
foo3 == foo4                                     # False    
foo3 != foo4                                     # True 
not foo3 == foo4                                 # True    
not foo3 != foo4                                 # False